Loading…

Deadbands, Droop, and Inertia Impact on Power System Frequency Distribution

Power system inertia is falling as more energy is supplied by renewable generators, and there are concerns about the frequency controls required to guarantee satisfactory system performance. The majority of research into the negative effect of low inertia has focused on poor dynamic response followi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2019-07, Vol.34 (4), p.3098-3108
Main Authors: Vorobev, Petr, Greenwood, David M., Bell, John H., Bialek, Janusz W., Taylor, Philip C., Turitsyn, Konstantin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-cafb654f0085b6da953294181553923fa1cec558adda50d41e61b37cf05dc2123
cites cdi_FETCH-LOGICAL-c339t-cafb654f0085b6da953294181553923fa1cec558adda50d41e61b37cf05dc2123
container_end_page 3108
container_issue 4
container_start_page 3098
container_title IEEE transactions on power systems
container_volume 34
creator Vorobev, Petr
Greenwood, David M.
Bell, John H.
Bialek, Janusz W.
Taylor, Philip C.
Turitsyn, Konstantin
description Power system inertia is falling as more energy is supplied by renewable generators, and there are concerns about the frequency controls required to guarantee satisfactory system performance. The majority of research into the negative effect of low inertia has focused on poor dynamic response following major disturbances, when the transient frequency dip can become unacceptable. However, another important practical concern-keeping average frequency deviations within acceptable limits-was mainly out of the sight of the research community. In this manuscript, we present a method for finding the frequency probability density function (PDF) for a given power system. We pass from an initial stochastic dynamic model to deterministic equations for the frequency PDF, which are analyzed to uncover key system parameters influencing frequency deviations. We show that system inertia has little effect on the frequency PDF, making virtual inertia services insufficient for keeping frequency close to nominal under ambient load fluctuations. We establish that aggregate system droop and deadband width are the only parameters that have major influence on the average frequency deviations, suggesting that energy storage might be an excellent solution for tight frequency regulation. We also show that changing the governor deadband width does not significantly affect generator movement.
doi_str_mv 10.1109/TPWRS.2019.2895547
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2244352114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8626538</ieee_id><sourcerecordid>2244352114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-cafb654f0085b6da953294181553923fa1cec558adda50d41e61b37cf05dc2123</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKsvoJuA207N7zRZSmu1WLDYisuQSTIwxU7GJIP07U1tcXW5nHPuPXwA3GI0xhjJh83q8309JgjLMRGSczY5AwPMuShQOZHnYICE4EVW0CW4inGLECqzMACvM6dtpVsbR3AWvO9GMC9w0bqQGg0Xu06bBH0LV_7HBbjex-R2cB7cd-9as4ezJqbQVH1qfHsNLmr9Fd3NaQ7Bx_xpM30plm_Pi-njsjCUylQYXVclZzVCglel1ZJTIhkWuS6VhNYaG2dydW2t5sgy7Epc0YmpEbeGYEKH4P54tws-14hJbX0f2vxSEcIY5QRjll3k6DLBxxhcrbrQ7HTYK4zUAZr6g6YO0NQJWg7dHUONc-4_IEpSciroLy6lZ_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244352114</pqid></control><display><type>article</type><title>Deadbands, Droop, and Inertia Impact on Power System Frequency Distribution</title><source>IEEE Xplore (Online service)</source><creator>Vorobev, Petr ; Greenwood, David M. ; Bell, John H. ; Bialek, Janusz W. ; Taylor, Philip C. ; Turitsyn, Konstantin</creator><creatorcontrib>Vorobev, Petr ; Greenwood, David M. ; Bell, John H. ; Bialek, Janusz W. ; Taylor, Philip C. ; Turitsyn, Konstantin</creatorcontrib><description>Power system inertia is falling as more energy is supplied by renewable generators, and there are concerns about the frequency controls required to guarantee satisfactory system performance. The majority of research into the negative effect of low inertia has focused on poor dynamic response following major disturbances, when the transient frequency dip can become unacceptable. However, another important practical concern-keeping average frequency deviations within acceptable limits-was mainly out of the sight of the research community. In this manuscript, we present a method for finding the frequency probability density function (PDF) for a given power system. We pass from an initial stochastic dynamic model to deterministic equations for the frequency PDF, which are analyzed to uncover key system parameters influencing frequency deviations. We show that system inertia has little effect on the frequency PDF, making virtual inertia services insufficient for keeping frequency close to nominal under ambient load fluctuations. We establish that aggregate system droop and deadband width are the only parameters that have major influence on the average frequency deviations, suggesting that energy storage might be an excellent solution for tight frequency regulation. We also show that changing the governor deadband width does not significantly affect generator movement.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2895547</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>deadbands ; droop control ; Dynamic models ; Dynamic response ; Electric power distribution ; Energy storage ; Frequency control ; Frequency distribution ; frequency fluctuations ; Inertia ; Load fluctuation ; low inertia grids ; Mathematical model ; Parameters ; Power system dynamics ; Probability density function ; Probability density functions ; Stochastic processes ; Transient analysis</subject><ispartof>IEEE transactions on power systems, 2019-07, Vol.34 (4), p.3098-3108</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-cafb654f0085b6da953294181553923fa1cec558adda50d41e61b37cf05dc2123</citedby><cites>FETCH-LOGICAL-c339t-cafb654f0085b6da953294181553923fa1cec558adda50d41e61b37cf05dc2123</cites><orcidid>0000-0002-9184-019X ; 0000-0002-7997-8962 ; 0000-0002-1622-5058 ; 0000-0001-8632-6033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8626538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Vorobev, Petr</creatorcontrib><creatorcontrib>Greenwood, David M.</creatorcontrib><creatorcontrib>Bell, John H.</creatorcontrib><creatorcontrib>Bialek, Janusz W.</creatorcontrib><creatorcontrib>Taylor, Philip C.</creatorcontrib><creatorcontrib>Turitsyn, Konstantin</creatorcontrib><title>Deadbands, Droop, and Inertia Impact on Power System Frequency Distribution</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Power system inertia is falling as more energy is supplied by renewable generators, and there are concerns about the frequency controls required to guarantee satisfactory system performance. The majority of research into the negative effect of low inertia has focused on poor dynamic response following major disturbances, when the transient frequency dip can become unacceptable. However, another important practical concern-keeping average frequency deviations within acceptable limits-was mainly out of the sight of the research community. In this manuscript, we present a method for finding the frequency probability density function (PDF) for a given power system. We pass from an initial stochastic dynamic model to deterministic equations for the frequency PDF, which are analyzed to uncover key system parameters influencing frequency deviations. We show that system inertia has little effect on the frequency PDF, making virtual inertia services insufficient for keeping frequency close to nominal under ambient load fluctuations. We establish that aggregate system droop and deadband width are the only parameters that have major influence on the average frequency deviations, suggesting that energy storage might be an excellent solution for tight frequency regulation. We also show that changing the governor deadband width does not significantly affect generator movement.</description><subject>deadbands</subject><subject>droop control</subject><subject>Dynamic models</subject><subject>Dynamic response</subject><subject>Electric power distribution</subject><subject>Energy storage</subject><subject>Frequency control</subject><subject>Frequency distribution</subject><subject>frequency fluctuations</subject><subject>Inertia</subject><subject>Load fluctuation</subject><subject>low inertia grids</subject><subject>Mathematical model</subject><subject>Parameters</subject><subject>Power system dynamics</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Stochastic processes</subject><subject>Transient analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKsvoJuA207N7zRZSmu1WLDYisuQSTIwxU7GJIP07U1tcXW5nHPuPXwA3GI0xhjJh83q8309JgjLMRGSczY5AwPMuShQOZHnYICE4EVW0CW4inGLECqzMACvM6dtpVsbR3AWvO9GMC9w0bqQGg0Xu06bBH0LV_7HBbjex-R2cB7cd-9as4ezJqbQVH1qfHsNLmr9Fd3NaQ7Bx_xpM30plm_Pi-njsjCUylQYXVclZzVCglel1ZJTIhkWuS6VhNYaG2dydW2t5sgy7Epc0YmpEbeGYEKH4P54tws-14hJbX0f2vxSEcIY5QRjll3k6DLBxxhcrbrQ7HTYK4zUAZr6g6YO0NQJWg7dHUONc-4_IEpSciroLy6lZ_g</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Vorobev, Petr</creator><creator>Greenwood, David M.</creator><creator>Bell, John H.</creator><creator>Bialek, Janusz W.</creator><creator>Taylor, Philip C.</creator><creator>Turitsyn, Konstantin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9184-019X</orcidid><orcidid>https://orcid.org/0000-0002-7997-8962</orcidid><orcidid>https://orcid.org/0000-0002-1622-5058</orcidid><orcidid>https://orcid.org/0000-0001-8632-6033</orcidid></search><sort><creationdate>201907</creationdate><title>Deadbands, Droop, and Inertia Impact on Power System Frequency Distribution</title><author>Vorobev, Petr ; Greenwood, David M. ; Bell, John H. ; Bialek, Janusz W. ; Taylor, Philip C. ; Turitsyn, Konstantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-cafb654f0085b6da953294181553923fa1cec558adda50d41e61b37cf05dc2123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>deadbands</topic><topic>droop control</topic><topic>Dynamic models</topic><topic>Dynamic response</topic><topic>Electric power distribution</topic><topic>Energy storage</topic><topic>Frequency control</topic><topic>Frequency distribution</topic><topic>frequency fluctuations</topic><topic>Inertia</topic><topic>Load fluctuation</topic><topic>low inertia grids</topic><topic>Mathematical model</topic><topic>Parameters</topic><topic>Power system dynamics</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Stochastic processes</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorobev, Petr</creatorcontrib><creatorcontrib>Greenwood, David M.</creatorcontrib><creatorcontrib>Bell, John H.</creatorcontrib><creatorcontrib>Bialek, Janusz W.</creatorcontrib><creatorcontrib>Taylor, Philip C.</creatorcontrib><creatorcontrib>Turitsyn, Konstantin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorobev, Petr</au><au>Greenwood, David M.</au><au>Bell, John H.</au><au>Bialek, Janusz W.</au><au>Taylor, Philip C.</au><au>Turitsyn, Konstantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deadbands, Droop, and Inertia Impact on Power System Frequency Distribution</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2019-07</date><risdate>2019</risdate><volume>34</volume><issue>4</issue><spage>3098</spage><epage>3108</epage><pages>3098-3108</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Power system inertia is falling as more energy is supplied by renewable generators, and there are concerns about the frequency controls required to guarantee satisfactory system performance. The majority of research into the negative effect of low inertia has focused on poor dynamic response following major disturbances, when the transient frequency dip can become unacceptable. However, another important practical concern-keeping average frequency deviations within acceptable limits-was mainly out of the sight of the research community. In this manuscript, we present a method for finding the frequency probability density function (PDF) for a given power system. We pass from an initial stochastic dynamic model to deterministic equations for the frequency PDF, which are analyzed to uncover key system parameters influencing frequency deviations. We show that system inertia has little effect on the frequency PDF, making virtual inertia services insufficient for keeping frequency close to nominal under ambient load fluctuations. We establish that aggregate system droop and deadband width are the only parameters that have major influence on the average frequency deviations, suggesting that energy storage might be an excellent solution for tight frequency regulation. We also show that changing the governor deadband width does not significantly affect generator movement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2895547</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9184-019X</orcidid><orcidid>https://orcid.org/0000-0002-7997-8962</orcidid><orcidid>https://orcid.org/0000-0002-1622-5058</orcidid><orcidid>https://orcid.org/0000-0001-8632-6033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2019-07, Vol.34 (4), p.3098-3108
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2244352114
source IEEE Xplore (Online service)
subjects deadbands
droop control
Dynamic models
Dynamic response
Electric power distribution
Energy storage
Frequency control
Frequency distribution
frequency fluctuations
Inertia
Load fluctuation
low inertia grids
Mathematical model
Parameters
Power system dynamics
Probability density function
Probability density functions
Stochastic processes
Transient analysis
title Deadbands, Droop, and Inertia Impact on Power System Frequency Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deadbands,%20Droop,%20and%20Inertia%20Impact%20on%20Power%20System%20Frequency%20Distribution&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Vorobev,%20Petr&rft.date=2019-07&rft.volume=34&rft.issue=4&rft.spage=3098&rft.epage=3108&rft.pages=3098-3108&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2895547&rft_dat=%3Cproquest_ieee_%3E2244352114%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-cafb654f0085b6da953294181553923fa1cec558adda50d41e61b37cf05dc2123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2244352114&rft_id=info:pmid/&rft_ieee_id=8626538&rfr_iscdi=true