Loading…

Sparse Multi-Bending Snakes

Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2019-08, Vol.28 (8), p.3898-3909
Main Authors: Araujo, Ricardo J., Fernandes, Kelwin, Cardoso, Jaime S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693
cites cdi_FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693
container_end_page 3909
container_issue 8
container_start_page 3898
container_title IEEE transactions on image processing
container_volume 28
creator Araujo, Ricardo J.
Fernandes, Kelwin
Cardoso, Jaime S.
description Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order to overcome the known problems of traditional snakes, such as initialization dependence and poor convergence to concavities. In this paper, we address the scenario where the user wants to segment an object that has multiple dynamic regions but some of them do not correspond to the true object boundary. We propose a novel parametric active contour model, the Sparse Multi-Bending snake, which is capable of dividing the contour into a set of contiguous regions with different bending properties. We derive a new energy function that induces such behavior and presents a group optimization strategy that can be used to find the optimal bending resistance parameter for each point of the contour. We show the flexibility of our model in a set of synthetic images. In addition, we consider two real applications, lung segmentation in Computerized Tomography data and hand segmentation in depth images. We show how the proposed method is able to improve the segmentations obtained in both applications, when compared with other active contour models.
doi_str_mv 10.1109/TIP.2019.2902832
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2244356228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8658141</ieee_id><sourcerecordid>2188979119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvQkEKXrxsncnHJjna4kehotB6DtndrGzd7take_Dfm9Lag6cZmOedGR5CrhHGiKDvl7P3MQXUY6qBKkZPSB81xwSA09PYg5CJRK575CKEFQBygek56TFQnClQfTJcbKwPbvTa1dsqmbimqJrP0aKxXy5ckrPS1sFdHeqAfDw9LqcvyfzteTZ9mCc543KblCWzKc2y1FJuS1A5F7Ys4iUtZGaFZdKmTjErZcFBUqYRrWAsA-WwyFPNBuRuv3fj2-_Oha1ZVyF3dW0b13bBUFRKyxjbobf_0FXb-SZ-ZyjlnImURg8DAnsq920I3pVm46u19T8GwezEmSjO7MSZg7gYuTks7rK1K46BP1MRGO6Byjl3HKtUKOTIfgEnuG4H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244356228</pqid></control><display><type>article</type><title>Sparse Multi-Bending Snakes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Araujo, Ricardo J. ; Fernandes, Kelwin ; Cardoso, Jaime S.</creator><creatorcontrib>Araujo, Ricardo J. ; Fernandes, Kelwin ; Cardoso, Jaime S.</creatorcontrib><description>Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order to overcome the known problems of traditional snakes, such as initialization dependence and poor convergence to concavities. In this paper, we address the scenario where the user wants to segment an object that has multiple dynamic regions but some of them do not correspond to the true object boundary. We propose a novel parametric active contour model, the Sparse Multi-Bending snake, which is capable of dividing the contour into a set of contiguous regions with different bending properties. We derive a new energy function that induces such behavior and presents a group optimization strategy that can be used to find the optimal bending resistance parameter for each point of the contour. We show the flexibility of our model in a set of synthetic images. In addition, we consider two real applications, lung segmentation in Computerized Tomography data and hand segmentation in depth images. We show how the proposed method is able to improve the segmentations obtained in both applications, when compared with other active contour models.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2902832</identifier><identifier>PMID: 30843808</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active contour model ; Active contours ; Algorithms ; Computational modeling ; Computed tomography ; Computer vision ; Contours ; Convergence ; Dependence ; Force ; heterogeneous rigidity ; Image edge detection ; Image segmentation ; Interoperability ; Level set ; Optimization ; segmentation ; Shape ; Snakes ; sparsity</subject><ispartof>IEEE transactions on image processing, 2019-08, Vol.28 (8), p.3898-3909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693</citedby><cites>FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693</cites><orcidid>0000-0002-6838-9484 ; 0000-0002-3760-2473 ; 0000-0001-7222-196X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8658141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30843808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Araujo, Ricardo J.</creatorcontrib><creatorcontrib>Fernandes, Kelwin</creatorcontrib><creatorcontrib>Cardoso, Jaime S.</creatorcontrib><title>Sparse Multi-Bending Snakes</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order to overcome the known problems of traditional snakes, such as initialization dependence and poor convergence to concavities. In this paper, we address the scenario where the user wants to segment an object that has multiple dynamic regions but some of them do not correspond to the true object boundary. We propose a novel parametric active contour model, the Sparse Multi-Bending snake, which is capable of dividing the contour into a set of contiguous regions with different bending properties. We derive a new energy function that induces such behavior and presents a group optimization strategy that can be used to find the optimal bending resistance parameter for each point of the contour. We show the flexibility of our model in a set of synthetic images. In addition, we consider two real applications, lung segmentation in Computerized Tomography data and hand segmentation in depth images. We show how the proposed method is able to improve the segmentations obtained in both applications, when compared with other active contour models.</description><subject>Active contour model</subject><subject>Active contours</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>Computer vision</subject><subject>Contours</subject><subject>Convergence</subject><subject>Dependence</subject><subject>Force</subject><subject>heterogeneous rigidity</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Interoperability</subject><subject>Level set</subject><subject>Optimization</subject><subject>segmentation</subject><subject>Shape</subject><subject>Snakes</subject><subject>sparsity</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlbvQkEKXrxsncnHJjna4kehotB6DtndrGzd7take_Dfm9Lag6cZmOedGR5CrhHGiKDvl7P3MQXUY6qBKkZPSB81xwSA09PYg5CJRK575CKEFQBygek56TFQnClQfTJcbKwPbvTa1dsqmbimqJrP0aKxXy5ckrPS1sFdHeqAfDw9LqcvyfzteTZ9mCc543KblCWzKc2y1FJuS1A5F7Ys4iUtZGaFZdKmTjErZcFBUqYRrWAsA-WwyFPNBuRuv3fj2-_Oha1ZVyF3dW0b13bBUFRKyxjbobf_0FXb-SZ-ZyjlnImURg8DAnsq920I3pVm46u19T8GwezEmSjO7MSZg7gYuTks7rK1K46BP1MRGO6Byjl3HKtUKOTIfgEnuG4H</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Araujo, Ricardo J.</creator><creator>Fernandes, Kelwin</creator><creator>Cardoso, Jaime S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6838-9484</orcidid><orcidid>https://orcid.org/0000-0002-3760-2473</orcidid><orcidid>https://orcid.org/0000-0001-7222-196X</orcidid></search><sort><creationdate>20190801</creationdate><title>Sparse Multi-Bending Snakes</title><author>Araujo, Ricardo J. ; Fernandes, Kelwin ; Cardoso, Jaime S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active contour model</topic><topic>Active contours</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>Computer vision</topic><topic>Contours</topic><topic>Convergence</topic><topic>Dependence</topic><topic>Force</topic><topic>heterogeneous rigidity</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Interoperability</topic><topic>Level set</topic><topic>Optimization</topic><topic>segmentation</topic><topic>Shape</topic><topic>Snakes</topic><topic>sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araujo, Ricardo J.</creatorcontrib><creatorcontrib>Fernandes, Kelwin</creatorcontrib><creatorcontrib>Cardoso, Jaime S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araujo, Ricardo J.</au><au>Fernandes, Kelwin</au><au>Cardoso, Jaime S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Multi-Bending Snakes</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>28</volume><issue>8</issue><spage>3898</spage><epage>3909</epage><pages>3898-3909</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order to overcome the known problems of traditional snakes, such as initialization dependence and poor convergence to concavities. In this paper, we address the scenario where the user wants to segment an object that has multiple dynamic regions but some of them do not correspond to the true object boundary. We propose a novel parametric active contour model, the Sparse Multi-Bending snake, which is capable of dividing the contour into a set of contiguous regions with different bending properties. We derive a new energy function that induces such behavior and presents a group optimization strategy that can be used to find the optimal bending resistance parameter for each point of the contour. We show the flexibility of our model in a set of synthetic images. In addition, we consider two real applications, lung segmentation in Computerized Tomography data and hand segmentation in depth images. We show how the proposed method is able to improve the segmentations obtained in both applications, when compared with other active contour models.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30843808</pmid><doi>10.1109/TIP.2019.2902832</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6838-9484</orcidid><orcidid>https://orcid.org/0000-0002-3760-2473</orcidid><orcidid>https://orcid.org/0000-0001-7222-196X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-08, Vol.28 (8), p.3898-3909
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2244356228
source IEEE Electronic Library (IEL) Journals
subjects Active contour model
Active contours
Algorithms
Computational modeling
Computed tomography
Computer vision
Contours
Convergence
Dependence
Force
heterogeneous rigidity
Image edge detection
Image segmentation
Interoperability
Level set
Optimization
segmentation
Shape
Snakes
sparsity
title Sparse Multi-Bending Snakes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Multi-Bending%20Snakes&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Araujo,%20Ricardo%20J.&rft.date=2019-08-01&rft.volume=28&rft.issue=8&rft.spage=3898&rft.epage=3909&rft.pages=3898-3909&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2902832&rft_dat=%3Cproquest_ieee_%3E2188979119%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2244356228&rft_id=info:pmid/30843808&rft_ieee_id=8658141&rfr_iscdi=true