Loading…
Sparse Multi-Bending Snakes
Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order...
Saved in:
Published in: | IEEE transactions on image processing 2019-08, Vol.28 (8), p.3898-3909 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693 |
container_end_page | 3909 |
container_issue | 8 |
container_start_page | 3898 |
container_title | IEEE transactions on image processing |
container_volume | 28 |
creator | Araujo, Ricardo J. Fernandes, Kelwin Cardoso, Jaime S. |
description | Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order to overcome the known problems of traditional snakes, such as initialization dependence and poor convergence to concavities. In this paper, we address the scenario where the user wants to segment an object that has multiple dynamic regions but some of them do not correspond to the true object boundary. We propose a novel parametric active contour model, the Sparse Multi-Bending snake, which is capable of dividing the contour into a set of contiguous regions with different bending properties. We derive a new energy function that induces such behavior and presents a group optimization strategy that can be used to find the optimal bending resistance parameter for each point of the contour. We show the flexibility of our model in a set of synthetic images. In addition, we consider two real applications, lung segmentation in Computerized Tomography data and hand segmentation in depth images. We show how the proposed method is able to improve the segmentations obtained in both applications, when compared with other active contour models. |
doi_str_mv | 10.1109/TIP.2019.2902832 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2244356228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8658141</ieee_id><sourcerecordid>2188979119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvQkEKXrxsncnHJjna4kehotB6DtndrGzd7take_Dfm9Lag6cZmOedGR5CrhHGiKDvl7P3MQXUY6qBKkZPSB81xwSA09PYg5CJRK575CKEFQBygek56TFQnClQfTJcbKwPbvTa1dsqmbimqJrP0aKxXy5ckrPS1sFdHeqAfDw9LqcvyfzteTZ9mCc543KblCWzKc2y1FJuS1A5F7Ys4iUtZGaFZdKmTjErZcFBUqYRrWAsA-WwyFPNBuRuv3fj2-_Oha1ZVyF3dW0b13bBUFRKyxjbobf_0FXb-SZ-ZyjlnImURg8DAnsq920I3pVm46u19T8GwezEmSjO7MSZg7gYuTks7rK1K46BP1MRGO6Byjl3HKtUKOTIfgEnuG4H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244356228</pqid></control><display><type>article</type><title>Sparse Multi-Bending Snakes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Araujo, Ricardo J. ; Fernandes, Kelwin ; Cardoso, Jaime S.</creator><creatorcontrib>Araujo, Ricardo J. ; Fernandes, Kelwin ; Cardoso, Jaime S.</creatorcontrib><description>Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order to overcome the known problems of traditional snakes, such as initialization dependence and poor convergence to concavities. In this paper, we address the scenario where the user wants to segment an object that has multiple dynamic regions but some of them do not correspond to the true object boundary. We propose a novel parametric active contour model, the Sparse Multi-Bending snake, which is capable of dividing the contour into a set of contiguous regions with different bending properties. We derive a new energy function that induces such behavior and presents a group optimization strategy that can be used to find the optimal bending resistance parameter for each point of the contour. We show the flexibility of our model in a set of synthetic images. In addition, we consider two real applications, lung segmentation in Computerized Tomography data and hand segmentation in depth images. We show how the proposed method is able to improve the segmentations obtained in both applications, when compared with other active contour models.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2902832</identifier><identifier>PMID: 30843808</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active contour model ; Active contours ; Algorithms ; Computational modeling ; Computed tomography ; Computer vision ; Contours ; Convergence ; Dependence ; Force ; heterogeneous rigidity ; Image edge detection ; Image segmentation ; Interoperability ; Level set ; Optimization ; segmentation ; Shape ; Snakes ; sparsity</subject><ispartof>IEEE transactions on image processing, 2019-08, Vol.28 (8), p.3898-3909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693</citedby><cites>FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693</cites><orcidid>0000-0002-6838-9484 ; 0000-0002-3760-2473 ; 0000-0001-7222-196X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8658141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30843808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Araujo, Ricardo J.</creatorcontrib><creatorcontrib>Fernandes, Kelwin</creatorcontrib><creatorcontrib>Cardoso, Jaime S.</creatorcontrib><title>Sparse Multi-Bending Snakes</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order to overcome the known problems of traditional snakes, such as initialization dependence and poor convergence to concavities. In this paper, we address the scenario where the user wants to segment an object that has multiple dynamic regions but some of them do not correspond to the true object boundary. We propose a novel parametric active contour model, the Sparse Multi-Bending snake, which is capable of dividing the contour into a set of contiguous regions with different bending properties. We derive a new energy function that induces such behavior and presents a group optimization strategy that can be used to find the optimal bending resistance parameter for each point of the contour. We show the flexibility of our model in a set of synthetic images. In addition, we consider two real applications, lung segmentation in Computerized Tomography data and hand segmentation in depth images. We show how the proposed method is able to improve the segmentations obtained in both applications, when compared with other active contour models.</description><subject>Active contour model</subject><subject>Active contours</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>Computer vision</subject><subject>Contours</subject><subject>Convergence</subject><subject>Dependence</subject><subject>Force</subject><subject>heterogeneous rigidity</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Interoperability</subject><subject>Level set</subject><subject>Optimization</subject><subject>segmentation</subject><subject>Shape</subject><subject>Snakes</subject><subject>sparsity</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlbvQkEKXrxsncnHJjna4kehotB6DtndrGzd7take_Dfm9Lag6cZmOedGR5CrhHGiKDvl7P3MQXUY6qBKkZPSB81xwSA09PYg5CJRK575CKEFQBygek56TFQnClQfTJcbKwPbvTa1dsqmbimqJrP0aKxXy5ckrPS1sFdHeqAfDw9LqcvyfzteTZ9mCc543KblCWzKc2y1FJuS1A5F7Ys4iUtZGaFZdKmTjErZcFBUqYRrWAsA-WwyFPNBuRuv3fj2-_Oha1ZVyF3dW0b13bBUFRKyxjbobf_0FXb-SZ-ZyjlnImURg8DAnsq920I3pVm46u19T8GwezEmSjO7MSZg7gYuTks7rK1K46BP1MRGO6Byjl3HKtUKOTIfgEnuG4H</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Araujo, Ricardo J.</creator><creator>Fernandes, Kelwin</creator><creator>Cardoso, Jaime S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6838-9484</orcidid><orcidid>https://orcid.org/0000-0002-3760-2473</orcidid><orcidid>https://orcid.org/0000-0001-7222-196X</orcidid></search><sort><creationdate>20190801</creationdate><title>Sparse Multi-Bending Snakes</title><author>Araujo, Ricardo J. ; Fernandes, Kelwin ; Cardoso, Jaime S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active contour model</topic><topic>Active contours</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>Computer vision</topic><topic>Contours</topic><topic>Convergence</topic><topic>Dependence</topic><topic>Force</topic><topic>heterogeneous rigidity</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Interoperability</topic><topic>Level set</topic><topic>Optimization</topic><topic>segmentation</topic><topic>Shape</topic><topic>Snakes</topic><topic>sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araujo, Ricardo J.</creatorcontrib><creatorcontrib>Fernandes, Kelwin</creatorcontrib><creatorcontrib>Cardoso, Jaime S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araujo, Ricardo J.</au><au>Fernandes, Kelwin</au><au>Cardoso, Jaime S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Multi-Bending Snakes</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>28</volume><issue>8</issue><spage>3898</spage><epage>3909</epage><pages>3898-3909</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Active contour models are one of the most emblematic algorithms of computer vision. Their strong theoretical foundations and high user interoperability turned them into a reference approach for object segmentation and tracking tasks. A high number of modifications have already been proposed in order to overcome the known problems of traditional snakes, such as initialization dependence and poor convergence to concavities. In this paper, we address the scenario where the user wants to segment an object that has multiple dynamic regions but some of them do not correspond to the true object boundary. We propose a novel parametric active contour model, the Sparse Multi-Bending snake, which is capable of dividing the contour into a set of contiguous regions with different bending properties. We derive a new energy function that induces such behavior and presents a group optimization strategy that can be used to find the optimal bending resistance parameter for each point of the contour. We show the flexibility of our model in a set of synthetic images. In addition, we consider two real applications, lung segmentation in Computerized Tomography data and hand segmentation in depth images. We show how the proposed method is able to improve the segmentations obtained in both applications, when compared with other active contour models.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30843808</pmid><doi>10.1109/TIP.2019.2902832</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6838-9484</orcidid><orcidid>https://orcid.org/0000-0002-3760-2473</orcidid><orcidid>https://orcid.org/0000-0001-7222-196X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2019-08, Vol.28 (8), p.3898-3909 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2244356228 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Active contour model Active contours Algorithms Computational modeling Computed tomography Computer vision Contours Convergence Dependence Force heterogeneous rigidity Image edge detection Image segmentation Interoperability Level set Optimization segmentation Shape Snakes sparsity |
title | Sparse Multi-Bending Snakes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Multi-Bending%20Snakes&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Araujo,%20Ricardo%20J.&rft.date=2019-08-01&rft.volume=28&rft.issue=8&rft.spage=3898&rft.epage=3909&rft.pages=3898-3909&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2902832&rft_dat=%3Cproquest_ieee_%3E2188979119%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-ff3a62bb6a24af08c45afd451957ba5a37a6e83a77d40723911a533b08e1dc693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2244356228&rft_id=info:pmid/30843808&rft_ieee_id=8658141&rfr_iscdi=true |