Loading…

Multi-Frequency Multi-Power One-to-Many Wireless Power Transfer System

This paper proposes and implements a novel multi-frequency multi-power wireless power transfer (MFMP-WPT) system based on one single transmitter for simultaneously and compatibly energizing multi-standard receivers. Generally, implementing a multi-frequency WPT often requires a compromise in system...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2019-07, Vol.55 (7), p.1-9
Main Authors: Liu, Wei, Chau, K. T., Lee, Christopher H. T., Jiang, Chaoqiang, Han, Wei, Lam, W. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes and implements a novel multi-frequency multi-power wireless power transfer (MFMP-WPT) system based on one single transmitter for simultaneously and compatibly energizing multi-standard receivers. Generally, implementing a multi-frequency WPT often requires a compromise in system complexity, control difficulty, switching frequency, or transmission efficiency. By using only a single transmitter with an artful inverter topology, the proposed MFMP-WPT system can effectively achieve multi-frequency multi-magnitude superposition and switching frequency reduction while maintaining the control fitness and convenience of square-wave generation with 50% duty cycle. Moreover, by switching at the fundamental frequency in a range of 80-130 kHz, the single transmitter becomes competent for one-to-many MFMP-WPT operation for diverse wireless power on-demands. Consequently, the fundamental and high-order harmonic wireless energies with multiple power levels can be, respectively, picked up by the multi-standard receivers, depending on their energy requirements. The experimental transmission and system efficiencies can reach 81.57% and 64.74% under MFMP-WPT, respectively. Theoretical analysis, computer simulation, and experimental results are provided to verify the feasibility of the proposed MFMP-WPT system.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2019.2896468