Loading…
Bag-type Model with Fractal Structure
In this work we present a bag-type model within a non-extensive statistics applied to the description of the properties of a hadronic system with an underlying fractal structure. The non-extensive ideal gas inside the bag is determined by the grand canonical partition function from which pressure, e...
Saved in:
Published in: | arXiv.org 2019-06 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Andrade, Evandro Deppman, Airton Megias, Eugenio Menezes, Débora P Tiago Nunes da Silva |
description | In this work we present a bag-type model within a non-extensive statistics applied to the description of the properties of a hadronic system with an underlying fractal structure. The non-extensive ideal gas inside the bag is determined by the grand canonical partition function from which pressure, energy and particle density as well as temperature and chemical potential are obtained for the hadronic system. These quantities are studied in the approximation of fixed mass for all bag constituents but also for discrete and continuum masses. In all cases, the freeze-out line, corresponding to the energy per particle equal to 1 GeV and the lines corresponding to a fractal structure inside the proton volume are obtained. Finally, the pressure on the bag surface of the proton is calculated and the resulting value \((0.135\, {\rm GeV})^4\) obtained. |
doi_str_mv | 10.48550/arxiv.1906.08301 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2244460089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2244460089</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-ce4f844870c5fdc5a890e6016bfa42b08025fe873f549890eaae785b3517ccc83</originalsourceid><addsrcrecordid>eNotjU1LAzEUAIMgtNT-gN4WxGPWl-S95O1Ri1Wh4sHeSzZNtGVxazbrx79X0dMcBmaEWCiokYng0ufP_XutGrA1sAF1IqbaGCUZtZ6I-TAcAEBbp4nMVFxc-2dZvo6xeuh3sas-9uWlWmUfiu-qp5LHUMYcz8Rp8t0Q5_-cic3qZrO8k-vH2_vl1Vp60o0MERMjsoNAaRfIcwPRgrJt8qhbYNCUIjuTCJtf5310TK0h5UIIbGbi_C97zP3bGIeyPfRjfv05brVGRAvAjfkGXQVARA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244460089</pqid></control><display><type>article</type><title>Bag-type Model with Fractal Structure</title><source>Publicly Available Content Database</source><creator>Andrade, Evandro ; Deppman, Airton ; Megias, Eugenio ; Menezes, Débora P ; Tiago Nunes da Silva</creator><creatorcontrib>Andrade, Evandro ; Deppman, Airton ; Megias, Eugenio ; Menezes, Débora P ; Tiago Nunes da Silva</creatorcontrib><description>In this work we present a bag-type model within a non-extensive statistics applied to the description of the properties of a hadronic system with an underlying fractal structure. The non-extensive ideal gas inside the bag is determined by the grand canonical partition function from which pressure, energy and particle density as well as temperature and chemical potential are obtained for the hadronic system. These quantities are studied in the approximation of fixed mass for all bag constituents but also for discrete and continuum masses. In all cases, the freeze-out line, corresponding to the energy per particle equal to 1 GeV and the lines corresponding to a fractal structure inside the proton volume are obtained. Finally, the pressure on the bag surface of the proton is calculated and the resulting value \((0.135\, {\rm GeV})^4\) obtained.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.08301</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical potential ; Fractal models ; Fractals ; Ideal gas ; Organic chemistry ; Particle density (concentration) ; Partitions (mathematics)</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2244460089?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Andrade, Evandro</creatorcontrib><creatorcontrib>Deppman, Airton</creatorcontrib><creatorcontrib>Megias, Eugenio</creatorcontrib><creatorcontrib>Menezes, Débora P</creatorcontrib><creatorcontrib>Tiago Nunes da Silva</creatorcontrib><title>Bag-type Model with Fractal Structure</title><title>arXiv.org</title><description>In this work we present a bag-type model within a non-extensive statistics applied to the description of the properties of a hadronic system with an underlying fractal structure. The non-extensive ideal gas inside the bag is determined by the grand canonical partition function from which pressure, energy and particle density as well as temperature and chemical potential are obtained for the hadronic system. These quantities are studied in the approximation of fixed mass for all bag constituents but also for discrete and continuum masses. In all cases, the freeze-out line, corresponding to the energy per particle equal to 1 GeV and the lines corresponding to a fractal structure inside the proton volume are obtained. Finally, the pressure on the bag surface of the proton is calculated and the resulting value \((0.135\, {\rm GeV})^4\) obtained.</description><subject>Chemical potential</subject><subject>Fractal models</subject><subject>Fractals</subject><subject>Ideal gas</subject><subject>Organic chemistry</subject><subject>Particle density (concentration)</subject><subject>Partitions (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEUAIMgtNT-gN4WxGPWl-S95O1Ri1Wh4sHeSzZNtGVxazbrx79X0dMcBmaEWCiokYng0ufP_XutGrA1sAF1IqbaGCUZtZ6I-TAcAEBbp4nMVFxc-2dZvo6xeuh3sas-9uWlWmUfiu-qp5LHUMYcz8Rp8t0Q5_-cic3qZrO8k-vH2_vl1Vp60o0MERMjsoNAaRfIcwPRgrJt8qhbYNCUIjuTCJtf5310TK0h5UIIbGbi_C97zP3bGIeyPfRjfv05brVGRAvAjfkGXQVARA</recordid><startdate>20190619</startdate><enddate>20190619</enddate><creator>Andrade, Evandro</creator><creator>Deppman, Airton</creator><creator>Megias, Eugenio</creator><creator>Menezes, Débora P</creator><creator>Tiago Nunes da Silva</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190619</creationdate><title>Bag-type Model with Fractal Structure</title><author>Andrade, Evandro ; Deppman, Airton ; Megias, Eugenio ; Menezes, Débora P ; Tiago Nunes da Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-ce4f844870c5fdc5a890e6016bfa42b08025fe873f549890eaae785b3517ccc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical potential</topic><topic>Fractal models</topic><topic>Fractals</topic><topic>Ideal gas</topic><topic>Organic chemistry</topic><topic>Particle density (concentration)</topic><topic>Partitions (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Andrade, Evandro</creatorcontrib><creatorcontrib>Deppman, Airton</creatorcontrib><creatorcontrib>Megias, Eugenio</creatorcontrib><creatorcontrib>Menezes, Débora P</creatorcontrib><creatorcontrib>Tiago Nunes da Silva</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrade, Evandro</au><au>Deppman, Airton</au><au>Megias, Eugenio</au><au>Menezes, Débora P</au><au>Tiago Nunes da Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bag-type Model with Fractal Structure</atitle><jtitle>arXiv.org</jtitle><date>2019-06-19</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In this work we present a bag-type model within a non-extensive statistics applied to the description of the properties of a hadronic system with an underlying fractal structure. The non-extensive ideal gas inside the bag is determined by the grand canonical partition function from which pressure, energy and particle density as well as temperature and chemical potential are obtained for the hadronic system. These quantities are studied in the approximation of fixed mass for all bag constituents but also for discrete and continuum masses. In all cases, the freeze-out line, corresponding to the energy per particle equal to 1 GeV and the lines corresponding to a fractal structure inside the proton volume are obtained. Finally, the pressure on the bag surface of the proton is calculated and the resulting value \((0.135\, {\rm GeV})^4\) obtained.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.08301</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2244460089 |
source | Publicly Available Content Database |
subjects | Chemical potential Fractal models Fractals Ideal gas Organic chemistry Particle density (concentration) Partitions (mathematics) |
title | Bag-type Model with Fractal Structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bag-type%20Model%20with%20Fractal%20Structure&rft.jtitle=arXiv.org&rft.au=Andrade,%20Evandro&rft.date=2019-06-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.08301&rft_dat=%3Cproquest%3E2244460089%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-ce4f844870c5fdc5a890e6016bfa42b08025fe873f549890eaae785b3517ccc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2244460089&rft_id=info:pmid/&rfr_iscdi=true |