Loading…

Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair

In this paper, we present a nanoscale Fourier transform spectrometer using a plasmonic interferometer consisting of a tilt subwavelength slit-nanowire pair on a metallic surface fabricated by the focused ion beam microfabrication technique. The incident broadband light strongly couples with the surf...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2019-06, Vol.114 (25)
Main Authors: Uulu, Doolos Aibek, Ashirov, Timur, Polat, Nahit, Yakar, Ozan, Balci, Sinan, Kocabas, Coskun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-dd002c06e66a2afde0e95e6ca5c2cb93ecadadf80ae6aff398e08261cbe539a3
cites cdi_FETCH-LOGICAL-c362t-dd002c06e66a2afde0e95e6ca5c2cb93ecadadf80ae6aff398e08261cbe539a3
container_end_page
container_issue 25
container_start_page
container_title Applied physics letters
container_volume 114
creator Uulu, Doolos Aibek
Ashirov, Timur
Polat, Nahit
Yakar, Ozan
Balci, Sinan
Kocabas, Coskun
description In this paper, we present a nanoscale Fourier transform spectrometer using a plasmonic interferometer consisting of a tilt subwavelength slit-nanowire pair on a metallic surface fabricated by the focused ion beam microfabrication technique. The incident broadband light strongly couples with the surface plasmons on the gold surface, and thus, surface plasmon polaritons (SPPs) are generated. The launched SPPs interfere with the incident light and generate high contrast interference fringes in the nanoslit. The transmitted SPPs through the metal nanoslit can decouple into free space and are collected by an objective in the far field. The spectroscopic information of the incidence light is obtained by fast Fourier transform of the fringe pattern of the SPPs. In our design, there is no need for a bulky dispersive spectrometer or dispersive optical elements. The dimension of the spectrometer is around 200 μm length. Our design is based on inherent coherence of the SPP waves propagating through the subwavelength metal nanoslit structures etched into an opaque gold film.
doi_str_mv 10.1063/1.5092517
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2245911461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2245911461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-dd002c06e66a2afde0e95e6ca5c2cb93ecadadf80ae6aff398e08261cbe539a3</originalsourceid><addsrcrecordid>eNp90M1KAzEQAOAgCtbqwTdY8KSwNT9NunuUYlWoeOk9TLMTSekma5Iqvr2RFj0InmaG-ZhhhpBLRieMKnHLJpK2XLLZERkxOpvVgrHmmIwopaJWrWSn5CylTSklF2JEnhdhFx3GKkfwyYbYV8MWUh98FTEFD95glQY0OYYec4G75PxrVRohbV2uv5MPF7EawMVzcmJhm_DiEMdktbhfzR_r5cvD0_xuWRuheK67jlJuqEKlgIPtkGIrURmQhpt1K9BAB51tKKACa0XbIG24YmaNUrQgxuRqP3aI4W2HKetNucKXjZrzqWwZmypW1PVemRhSimj1EF0P8VMzqr-fpZk-PKvYm71NxmXILvgf_B7iL9RDZ__Dfyd_AVqXens</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245911461</pqid></control><display><type>article</type><title>Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Uulu, Doolos Aibek ; Ashirov, Timur ; Polat, Nahit ; Yakar, Ozan ; Balci, Sinan ; Kocabas, Coskun</creator><creatorcontrib>Uulu, Doolos Aibek ; Ashirov, Timur ; Polat, Nahit ; Yakar, Ozan ; Balci, Sinan ; Kocabas, Coskun</creatorcontrib><description>In this paper, we present a nanoscale Fourier transform spectrometer using a plasmonic interferometer consisting of a tilt subwavelength slit-nanowire pair on a metallic surface fabricated by the focused ion beam microfabrication technique. The incident broadband light strongly couples with the surface plasmons on the gold surface, and thus, surface plasmon polaritons (SPPs) are generated. The launched SPPs interfere with the incident light and generate high contrast interference fringes in the nanoslit. The transmitted SPPs through the metal nanoslit can decouple into free space and are collected by an objective in the far field. The spectroscopic information of the incidence light is obtained by fast Fourier transform of the fringe pattern of the SPPs. In our design, there is no need for a bulky dispersive spectrometer or dispersive optical elements. The dimension of the spectrometer is around 200 μm length. Our design is based on inherent coherence of the SPP waves propagating through the subwavelength metal nanoslit structures etched into an opaque gold film.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5092517</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Broadband ; Far fields ; Fast Fourier transformations ; Fourier transform spectrometers ; Fourier transforms ; Gold ; Incident light ; Interference fringes ; Ion beams ; Nanowires ; Optical components ; Plasmons ; Polaritons ; Wave propagation</subject><ispartof>Applied physics letters, 2019-06, Vol.114 (25)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-dd002c06e66a2afde0e95e6ca5c2cb93ecadadf80ae6aff398e08261cbe539a3</citedby><cites>FETCH-LOGICAL-c362t-dd002c06e66a2afde0e95e6ca5c2cb93ecadadf80ae6aff398e08261cbe539a3</cites><orcidid>0000-0002-9809-8688 ; 0000-0002-7832-5716 ; 0000-0003-0831-5552 ; 0000-0003-1132-8768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5092517$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Uulu, Doolos Aibek</creatorcontrib><creatorcontrib>Ashirov, Timur</creatorcontrib><creatorcontrib>Polat, Nahit</creatorcontrib><creatorcontrib>Yakar, Ozan</creatorcontrib><creatorcontrib>Balci, Sinan</creatorcontrib><creatorcontrib>Kocabas, Coskun</creatorcontrib><title>Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair</title><title>Applied physics letters</title><description>In this paper, we present a nanoscale Fourier transform spectrometer using a plasmonic interferometer consisting of a tilt subwavelength slit-nanowire pair on a metallic surface fabricated by the focused ion beam microfabrication technique. The incident broadband light strongly couples with the surface plasmons on the gold surface, and thus, surface plasmon polaritons (SPPs) are generated. The launched SPPs interfere with the incident light and generate high contrast interference fringes in the nanoslit. The transmitted SPPs through the metal nanoslit can decouple into free space and are collected by an objective in the far field. The spectroscopic information of the incidence light is obtained by fast Fourier transform of the fringe pattern of the SPPs. In our design, there is no need for a bulky dispersive spectrometer or dispersive optical elements. The dimension of the spectrometer is around 200 μm length. Our design is based on inherent coherence of the SPP waves propagating through the subwavelength metal nanoslit structures etched into an opaque gold film.</description><subject>Applied physics</subject><subject>Broadband</subject><subject>Far fields</subject><subject>Fast Fourier transformations</subject><subject>Fourier transform spectrometers</subject><subject>Fourier transforms</subject><subject>Gold</subject><subject>Incident light</subject><subject>Interference fringes</subject><subject>Ion beams</subject><subject>Nanowires</subject><subject>Optical components</subject><subject>Plasmons</subject><subject>Polaritons</subject><subject>Wave propagation</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQAOAgCtbqwTdY8KSwNT9NunuUYlWoeOk9TLMTSekma5Iqvr2RFj0InmaG-ZhhhpBLRieMKnHLJpK2XLLZERkxOpvVgrHmmIwopaJWrWSn5CylTSklF2JEnhdhFx3GKkfwyYbYV8MWUh98FTEFD95glQY0OYYec4G75PxrVRohbV2uv5MPF7EawMVzcmJhm_DiEMdktbhfzR_r5cvD0_xuWRuheK67jlJuqEKlgIPtkGIrURmQhpt1K9BAB51tKKACa0XbIG24YmaNUrQgxuRqP3aI4W2HKetNucKXjZrzqWwZmypW1PVemRhSimj1EF0P8VMzqr-fpZk-PKvYm71NxmXILvgf_B7iL9RDZ__Dfyd_AVqXens</recordid><startdate>20190624</startdate><enddate>20190624</enddate><creator>Uulu, Doolos Aibek</creator><creator>Ashirov, Timur</creator><creator>Polat, Nahit</creator><creator>Yakar, Ozan</creator><creator>Balci, Sinan</creator><creator>Kocabas, Coskun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9809-8688</orcidid><orcidid>https://orcid.org/0000-0002-7832-5716</orcidid><orcidid>https://orcid.org/0000-0003-0831-5552</orcidid><orcidid>https://orcid.org/0000-0003-1132-8768</orcidid></search><sort><creationdate>20190624</creationdate><title>Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair</title><author>Uulu, Doolos Aibek ; Ashirov, Timur ; Polat, Nahit ; Yakar, Ozan ; Balci, Sinan ; Kocabas, Coskun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-dd002c06e66a2afde0e95e6ca5c2cb93ecadadf80ae6aff398e08261cbe539a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Broadband</topic><topic>Far fields</topic><topic>Fast Fourier transformations</topic><topic>Fourier transform spectrometers</topic><topic>Fourier transforms</topic><topic>Gold</topic><topic>Incident light</topic><topic>Interference fringes</topic><topic>Ion beams</topic><topic>Nanowires</topic><topic>Optical components</topic><topic>Plasmons</topic><topic>Polaritons</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uulu, Doolos Aibek</creatorcontrib><creatorcontrib>Ashirov, Timur</creatorcontrib><creatorcontrib>Polat, Nahit</creatorcontrib><creatorcontrib>Yakar, Ozan</creatorcontrib><creatorcontrib>Balci, Sinan</creatorcontrib><creatorcontrib>Kocabas, Coskun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uulu, Doolos Aibek</au><au>Ashirov, Timur</au><au>Polat, Nahit</au><au>Yakar, Ozan</au><au>Balci, Sinan</au><au>Kocabas, Coskun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair</atitle><jtitle>Applied physics letters</jtitle><date>2019-06-24</date><risdate>2019</risdate><volume>114</volume><issue>25</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this paper, we present a nanoscale Fourier transform spectrometer using a plasmonic interferometer consisting of a tilt subwavelength slit-nanowire pair on a metallic surface fabricated by the focused ion beam microfabrication technique. The incident broadband light strongly couples with the surface plasmons on the gold surface, and thus, surface plasmon polaritons (SPPs) are generated. The launched SPPs interfere with the incident light and generate high contrast interference fringes in the nanoslit. The transmitted SPPs through the metal nanoslit can decouple into free space and are collected by an objective in the far field. The spectroscopic information of the incidence light is obtained by fast Fourier transform of the fringe pattern of the SPPs. In our design, there is no need for a bulky dispersive spectrometer or dispersive optical elements. The dimension of the spectrometer is around 200 μm length. Our design is based on inherent coherence of the SPP waves propagating through the subwavelength metal nanoslit structures etched into an opaque gold film.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5092517</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9809-8688</orcidid><orcidid>https://orcid.org/0000-0002-7832-5716</orcidid><orcidid>https://orcid.org/0000-0003-0831-5552</orcidid><orcidid>https://orcid.org/0000-0003-1132-8768</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-06, Vol.114 (25)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2245911461
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Applied physics
Broadband
Far fields
Fast Fourier transformations
Fourier transform spectrometers
Fourier transforms
Gold
Incident light
Interference fringes
Ion beams
Nanowires
Optical components
Plasmons
Polaritons
Wave propagation
title Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20transform%20plasmon%20resonance%20spectrometer%20using%20nanoslit-nanowire%20pair&rft.jtitle=Applied%20physics%20letters&rft.au=Uulu,%20Doolos%20Aibek&rft.date=2019-06-24&rft.volume=114&rft.issue=25&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5092517&rft_dat=%3Cproquest_scita%3E2245911461%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-dd002c06e66a2afde0e95e6ca5c2cb93ecadadf80ae6aff398e08261cbe539a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2245911461&rft_id=info:pmid/&rfr_iscdi=true