Loading…
Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning
Background Machine learning models may enhance the early detection of clinically relevant hyperbilirubinemia based on patient information available in every hospital. Methods We conducted a longitudinal study on preterm and term born neonates with serial measurements of total serum bilirubin in the...
Saved in:
Published in: | Pediatric research 2019-07, Vol.86 (1), p.122-127 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Machine learning models may enhance the early detection of clinically relevant hyperbilirubinemia based on patient information available in every hospital.
Methods
We conducted a longitudinal study on preterm and term born neonates with serial measurements of total serum bilirubin in the first two weeks of life. An ensemble, that combines a logistic regression with a random forest classifier, was trained to discriminate between the two classes phototherapy treatment vs. no treatment.
Results
Of 362 neonates included in this study, 98 had a phototherapy treatment, which our model was able to predict up to 48 h in advance with an area under the ROC-curve of 95.20%. From a set of 44 variables, including potential laboratory and clinical confounders, a subset of just four (bilirubin, weight, gestational age, hours since birth) suffices for a strong predictive performance. The resulting early phototherapy prediction tool (EPPT) is provided as an open web application.
Conclusion
Early detection of clinically relevant hyperbilirubinemia can be enhanced by the application of machine learning. Existing guidelines can be further improved to optimize timing of bilirubin measurements to avoid toxic hyperbilirubinemia in high-risk patients while minimizing unneeded measurements in neonates who are at low risk. |
---|---|
ISSN: | 0031-3998 1530-0447 |
DOI: | 10.1038/s41390-019-0384-x |