Loading…
Quasiperiodic Forced Oscillations of a Solid Body in the Field of a Quadratic Potential
We consider a natural Lagrangian system that describes the motion of a solid body under the action of superposition of two potential force fields. The first field is a stationary field with quadratic potential, while the potential of the second field is linear in the space and depends on time as a q...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-07, Vol.240 (3), p.323-341 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3241-a52ecc14cb7903fa45c6502654e83c54fdfeb6ed3c38aa7beae8eaed1edf92363 |
container_end_page | 341 |
container_issue | 3 |
container_start_page | 323 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 240 |
creator | Parasyuk, I. O. |
description | We consider a natural Lagrangian system that describes the motion of a solid body under the action of superposition of two potential force fields. The first field is a stationary field with quadratic potential, while the potential of the second field is linear in the space and depends on time as a quasiperiodic function. We establish sufficient conditions under which this system has a classical hyperbolic quasiperiodic solution, which locally minimizes the Lagrangian averaged over time. |
doi_str_mv | 10.1007/s10958-019-04355-1 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2247738985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601323995</galeid><sourcerecordid>A601323995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3241-a52ecc14cb7903fa45c6502654e83c54fdfeb6ed3c38aa7beae8eaed1edf92363</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdR8PoCrgKuXKTmMpnMLFWsCoV6xWVIk5MamU5qMgV9e6MjSKFIOCScfN8J5C-KY0pGlBB5lihpRI0JbTApuRCYbhV7VEiOa9mI7XwmkmHOZblb7Kf0RrJU1XyveLlf6eSXEH2w3qBxiAYsmibj21b3PnQJBYc0egytt-gi2E_kO9S_Ahp7aO1wmWfYmGmD7kIPXe91e1jsON0mOPrdD4rn8dXT5Q2eTK9vL88n2HBWUqwFA2NoaWayIdzpUphKEFaJEmpuROmsg1kFlhteay1noKHOZSlY1zBe8YPiZJi7jOF9BalXb2EVu_ykYqyUktdNLf6ouW5B-c6FPmqz8Mmo84pQznjTfFN4AzWHDqJuQwfO5_YaP9rA52Vh4c1G4XRNyEwPH_1cr1JSt48P6ywbWBNDShGcWka_0PFTUaK-M1dD5ipnrn4yVzRLfJBShrs5xL_f-Mf6Au_mrEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247738985</pqid></control><display><type>article</type><title>Quasiperiodic Forced Oscillations of a Solid Body in the Field of a Quadratic Potential</title><source>Springer Nature</source><creator>Parasyuk, I. O.</creator><creatorcontrib>Parasyuk, I. O.</creatorcontrib><description>We consider a natural Lagrangian system that describes the motion of a solid body under the action of superposition of two potential force fields. The first field is a stationary field with quadratic potential, while the potential of the second field is linear in the space and depends on time as a quasiperiodic function. We establish sufficient conditions under which this system has a classical hyperbolic quasiperiodic solution, which locally minimizes the Lagrangian averaged over time.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-019-04355-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Superposition (mathematics)</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2019-07, Vol.240 (3), p.323-341</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3241-a52ecc14cb7903fa45c6502654e83c54fdfeb6ed3c38aa7beae8eaed1edf92363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Parasyuk, I. O.</creatorcontrib><title>Quasiperiodic Forced Oscillations of a Solid Body in the Field of a Quadratic Potential</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a natural Lagrangian system that describes the motion of a solid body under the action of superposition of two potential force fields. The first field is a stationary field with quadratic potential, while the potential of the second field is linear in the space and depends on time as a quasiperiodic function. We establish sufficient conditions under which this system has a classical hyperbolic quasiperiodic solution, which locally minimizes the Lagrangian averaged over time.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Superposition (mathematics)</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhgdR8PoCrgKuXKTmMpnMLFWsCoV6xWVIk5MamU5qMgV9e6MjSKFIOCScfN8J5C-KY0pGlBB5lihpRI0JbTApuRCYbhV7VEiOa9mI7XwmkmHOZblb7Kf0RrJU1XyveLlf6eSXEH2w3qBxiAYsmibj21b3PnQJBYc0egytt-gi2E_kO9S_Ahp7aO1wmWfYmGmD7kIPXe91e1jsON0mOPrdD4rn8dXT5Q2eTK9vL88n2HBWUqwFA2NoaWayIdzpUphKEFaJEmpuROmsg1kFlhteay1noKHOZSlY1zBe8YPiZJi7jOF9BalXb2EVu_ykYqyUktdNLf6ouW5B-c6FPmqz8Mmo84pQznjTfFN4AzWHDqJuQwfO5_YaP9rA52Vh4c1G4XRNyEwPH_1cr1JSt48P6ywbWBNDShGcWka_0PFTUaK-M1dD5ipnrn4yVzRLfJBShrs5xL_f-Mf6Au_mrEg</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>Parasyuk, I. O.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190709</creationdate><title>Quasiperiodic Forced Oscillations of a Solid Body in the Field of a Quadratic Potential</title><author>Parasyuk, I. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3241-a52ecc14cb7903fa45c6502654e83c54fdfeb6ed3c38aa7beae8eaed1edf92363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Superposition (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parasyuk, I. O.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parasyuk, I. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasiperiodic Forced Oscillations of a Solid Body in the Field of a Quadratic Potential</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2019-07-09</date><risdate>2019</risdate><volume>240</volume><issue>3</issue><spage>323</spage><epage>341</epage><pages>323-341</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a natural Lagrangian system that describes the motion of a solid body under the action of superposition of two potential force fields. The first field is a stationary field with quadratic potential, while the potential of the second field is linear in the space and depends on time as a quasiperiodic function. We establish sufficient conditions under which this system has a classical hyperbolic quasiperiodic solution, which locally minimizes the Lagrangian averaged over time.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-019-04355-1</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2019-07, Vol.240 (3), p.323-341 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2247738985 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics Superposition (mathematics) |
title | Quasiperiodic Forced Oscillations of a Solid Body in the Field of a Quadratic Potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasiperiodic%20Forced%20Oscillations%20of%20a%20Solid%20Body%20in%20the%20Field%20of%20a%20Quadratic%20Potential&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Parasyuk,%20I.%20O.&rft.date=2019-07-09&rft.volume=240&rft.issue=3&rft.spage=323&rft.epage=341&rft.pages=323-341&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-019-04355-1&rft_dat=%3Cgale_proqu%3EA601323995%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3241-a52ecc14cb7903fa45c6502654e83c54fdfeb6ed3c38aa7beae8eaed1edf92363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2247738985&rft_id=info:pmid/&rft_galeid=A601323995&rfr_iscdi=true |