Loading…

Estimating thermal response metrics for North American freshwater fish using Bayesian phylogenetic regression

Physiological performance in fish peaks within a well-defined range of temperatures, which is distinct for each species. Species-specific thermal responses for growth, survival, and reproduction are most commonly quantified directly through laboratory experiment or field observation, with a focus on...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of fisheries and aquatic sciences 2018-11, Vol.75 (11), p.1878-1885
Main Authors: Hasnain, Sarah S, Escobar, Michael D, Shuter, Brian J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-2ef2b68e0803471f7c966ab233cd325118bcc0f1f0e21be1c9184351f5ba205d3
cites cdi_FETCH-LOGICAL-c512t-2ef2b68e0803471f7c966ab233cd325118bcc0f1f0e21be1c9184351f5ba205d3
container_end_page 1885
container_issue 11
container_start_page 1878
container_title Canadian journal of fisheries and aquatic sciences
container_volume 75
creator Hasnain, Sarah S
Escobar, Michael D
Shuter, Brian J
description Physiological performance in fish peaks within a well-defined range of temperatures, which is distinct for each species. Species-specific thermal responses for growth, survival, and reproduction are most commonly quantified directly through laboratory experiment or field observation, with a focus on six specific metrics: optimum growth temperature and final temperature preferendum (growth), upper incipient lethal temperature and critical thermal maximum (survival), and optimum spawning temperature and optimum egg development temperature (reproduction). These values remain unknown for many North American freshwater fish species. In this paper, we present a new statistical method (Bayesian phylogenetic regression) that uses relationships between these metrics and phenetic relatedness to estimate unknown metric values. The reliability of these estimates was compared with those derived from models incorporating taxonomic family and models without any taxonomic information. Overall, incorporating taxonomic family relatedness improved estimation accuracy across all metrics. For Salmonidae and Cyprinidae, estimates derived from Bayesian phylogenetic regression typically had the highest expected reliability. We used our methods to generate 274 estimates of unknown metric values for over 100 North American freshwater fish species.
doi_str_mv 10.1139/cjfas-2017-0278
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2247986034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A560311531</galeid><sourcerecordid>A560311531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-2ef2b68e0803471f7c966ab233cd325118bcc0f1f0e21be1c9184351f5ba205d3</originalsourceid><addsrcrecordid>eNqVks1v1DAQxSMEEkvhzDWCE4e0HnudZI9L1S-pKhItEjfL8Y4Tr5I4tb2C_e87YTlQaQVCPlga_94bj_2y7D2wUwCxOjNbq2PBGVQF41X9IlsAZ7KopBAvswWrWFmUkn9_nb2JccsYcAlskQ0XMblBJze2eeowDLrPA8bJjxHzAVNwJubWh_zOh9Tl6wGposfcEtT90AlDbl3s8l2cHT7rPUZHx1O3732LIyZnyK8lOjo_vs1eWd1HfPd7P8m-XV48nF8Xt1-ubs7Xt4WRwFPB0fKmrJHVTCwrsJVZlaVuuBBmI-jeUDfGMAuWIYcGwaygXgoJVjaaZt6Ik-zjwXcK_nGHMamt34WRWirOl9WqLsn4rxQ9D2OSVxVRxYFqdY_KjdanoM08W9C9H9E6Kq8lOQJIAcR_OMKbyT2qP6HTIxCtDQ7OHHX99ExATMKfqdW7GNXN_df_YO-es2cH1gQfY0CrpkB5CHsFTM25Ur9ypeZcqTlXpOAHxRgMfSvqYLp_ip4ANa7O-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125005277</pqid></control><display><type>article</type><title>Estimating thermal response metrics for North American freshwater fish using Bayesian phylogenetic regression</title><source>NRC Research Press</source><creator>Hasnain, Sarah S ; Escobar, Michael D ; Shuter, Brian J</creator><creatorcontrib>Hasnain, Sarah S ; Escobar, Michael D ; Shuter, Brian J</creatorcontrib><description>Physiological performance in fish peaks within a well-defined range of temperatures, which is distinct for each species. Species-specific thermal responses for growth, survival, and reproduction are most commonly quantified directly through laboratory experiment or field observation, with a focus on six specific metrics: optimum growth temperature and final temperature preferendum (growth), upper incipient lethal temperature and critical thermal maximum (survival), and optimum spawning temperature and optimum egg development temperature (reproduction). These values remain unknown for many North American freshwater fish species. In this paper, we present a new statistical method (Bayesian phylogenetic regression) that uses relationships between these metrics and phenetic relatedness to estimate unknown metric values. The reliability of these estimates was compared with those derived from models incorporating taxonomic family and models without any taxonomic information. Overall, incorporating taxonomic family relatedness improved estimation accuracy across all metrics. For Salmonidae and Cyprinidae, estimates derived from Bayesian phylogenetic regression typically had the highest expected reliability. We used our methods to generate 274 estimates of unknown metric values for over 100 North American freshwater fish species.</description><identifier>ISSN: 0706-652X</identifier><identifier>EISSN: 1205-7533</identifier><identifier>DOI: 10.1139/cjfas-2017-0278</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>Bayesian analysis ; Bayesian theory ; Biogeny ; Cyprinidae ; Estimates ; Fish ; Fish eggs ; Fish reproduction ; Fishery research ; Freshwater ; Freshwater fish ; Freshwater fishes ; Growth ; Heat tolerance (Biology) ; Laboratory experimentation ; Larvae ; Larval stage ; Mathematical models ; Modelling ; Phylogenetics ; Phylogeny ; Regression ; Regression analysis ; Reliability ; Reproduction ; Reproduction (biology) ; Salmonidae ; Spawning ; Speciation ; Species ; Species identification ; Statistical analysis ; Statistical methods ; Survival ; Taxonomy ; Temperature ; Temperature effects ; Temperature preferences ; Temperature tolerance ; Thermal response ; Water ; Water temperature</subject><ispartof>Canadian journal of fisheries and aquatic sciences, 2018-11, Vol.75 (11), p.1878-1885</ispartof><rights>COPYRIGHT 2018 NRC Research Press</rights><rights>2018 Published by NRC Research Press</rights><rights>Copyright 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-2ef2b68e0803471f7c966ab233cd325118bcc0f1f0e21be1c9184351f5ba205d3</citedby><cites>FETCH-LOGICAL-c512t-2ef2b68e0803471f7c966ab233cd325118bcc0f1f0e21be1c9184351f5ba205d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cjfas-2017-0278$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cjfas-2017-0278$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,780,784,2930,27922,27923,64426,65004</link.rule.ids></links><search><creatorcontrib>Hasnain, Sarah S</creatorcontrib><creatorcontrib>Escobar, Michael D</creatorcontrib><creatorcontrib>Shuter, Brian J</creatorcontrib><title>Estimating thermal response metrics for North American freshwater fish using Bayesian phylogenetic regression</title><title>Canadian journal of fisheries and aquatic sciences</title><description>Physiological performance in fish peaks within a well-defined range of temperatures, which is distinct for each species. Species-specific thermal responses for growth, survival, and reproduction are most commonly quantified directly through laboratory experiment or field observation, with a focus on six specific metrics: optimum growth temperature and final temperature preferendum (growth), upper incipient lethal temperature and critical thermal maximum (survival), and optimum spawning temperature and optimum egg development temperature (reproduction). These values remain unknown for many North American freshwater fish species. In this paper, we present a new statistical method (Bayesian phylogenetic regression) that uses relationships between these metrics and phenetic relatedness to estimate unknown metric values. The reliability of these estimates was compared with those derived from models incorporating taxonomic family and models without any taxonomic information. Overall, incorporating taxonomic family relatedness improved estimation accuracy across all metrics. For Salmonidae and Cyprinidae, estimates derived from Bayesian phylogenetic regression typically had the highest expected reliability. We used our methods to generate 274 estimates of unknown metric values for over 100 North American freshwater fish species.</description><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Biogeny</subject><subject>Cyprinidae</subject><subject>Estimates</subject><subject>Fish</subject><subject>Fish eggs</subject><subject>Fish reproduction</subject><subject>Fishery research</subject><subject>Freshwater</subject><subject>Freshwater fish</subject><subject>Freshwater fishes</subject><subject>Growth</subject><subject>Heat tolerance (Biology)</subject><subject>Laboratory experimentation</subject><subject>Larvae</subject><subject>Larval stage</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Reliability</subject><subject>Reproduction</subject><subject>Reproduction (biology)</subject><subject>Salmonidae</subject><subject>Spawning</subject><subject>Speciation</subject><subject>Species</subject><subject>Species identification</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Survival</subject><subject>Taxonomy</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature preferences</subject><subject>Temperature tolerance</subject><subject>Thermal response</subject><subject>Water</subject><subject>Water temperature</subject><issn>0706-652X</issn><issn>1205-7533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqVks1v1DAQxSMEEkvhzDWCE4e0HnudZI9L1S-pKhItEjfL8Y4Tr5I4tb2C_e87YTlQaQVCPlga_94bj_2y7D2wUwCxOjNbq2PBGVQF41X9IlsAZ7KopBAvswWrWFmUkn9_nb2JccsYcAlskQ0XMblBJze2eeowDLrPA8bJjxHzAVNwJubWh_zOh9Tl6wGposfcEtT90AlDbl3s8l2cHT7rPUZHx1O3732LIyZnyK8lOjo_vs1eWd1HfPd7P8m-XV48nF8Xt1-ubs7Xt4WRwFPB0fKmrJHVTCwrsJVZlaVuuBBmI-jeUDfGMAuWIYcGwaygXgoJVjaaZt6Ik-zjwXcK_nGHMamt34WRWirOl9WqLsn4rxQ9D2OSVxVRxYFqdY_KjdanoM08W9C9H9E6Kq8lOQJIAcR_OMKbyT2qP6HTIxCtDQ7OHHX99ExATMKfqdW7GNXN_df_YO-es2cH1gQfY0CrpkB5CHsFTM25Ur9ypeZcqTlXpOAHxRgMfSvqYLp_ip4ANa7O-w</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Hasnain, Sarah S</creator><creator>Escobar, Michael D</creator><creator>Shuter, Brian J</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QG</scope><scope>7QH</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope></search><sort><creationdate>20181101</creationdate><title>Estimating thermal response metrics for North American freshwater fish using Bayesian phylogenetic regression</title><author>Hasnain, Sarah S ; Escobar, Michael D ; Shuter, Brian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-2ef2b68e0803471f7c966ab233cd325118bcc0f1f0e21be1c9184351f5ba205d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Biogeny</topic><topic>Cyprinidae</topic><topic>Estimates</topic><topic>Fish</topic><topic>Fish eggs</topic><topic>Fish reproduction</topic><topic>Fishery research</topic><topic>Freshwater</topic><topic>Freshwater fish</topic><topic>Freshwater fishes</topic><topic>Growth</topic><topic>Heat tolerance (Biology)</topic><topic>Laboratory experimentation</topic><topic>Larvae</topic><topic>Larval stage</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Reliability</topic><topic>Reproduction</topic><topic>Reproduction (biology)</topic><topic>Salmonidae</topic><topic>Spawning</topic><topic>Speciation</topic><topic>Species</topic><topic>Species identification</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Survival</topic><topic>Taxonomy</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature preferences</topic><topic>Temperature tolerance</topic><topic>Thermal response</topic><topic>Water</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasnain, Sarah S</creatorcontrib><creatorcontrib>Escobar, Michael D</creatorcontrib><creatorcontrib>Shuter, Brian J</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian journal of fisheries and aquatic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasnain, Sarah S</au><au>Escobar, Michael D</au><au>Shuter, Brian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating thermal response metrics for North American freshwater fish using Bayesian phylogenetic regression</atitle><jtitle>Canadian journal of fisheries and aquatic sciences</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>75</volume><issue>11</issue><spage>1878</spage><epage>1885</epage><pages>1878-1885</pages><issn>0706-652X</issn><eissn>1205-7533</eissn><abstract>Physiological performance in fish peaks within a well-defined range of temperatures, which is distinct for each species. Species-specific thermal responses for growth, survival, and reproduction are most commonly quantified directly through laboratory experiment or field observation, with a focus on six specific metrics: optimum growth temperature and final temperature preferendum (growth), upper incipient lethal temperature and critical thermal maximum (survival), and optimum spawning temperature and optimum egg development temperature (reproduction). These values remain unknown for many North American freshwater fish species. In this paper, we present a new statistical method (Bayesian phylogenetic regression) that uses relationships between these metrics and phenetic relatedness to estimate unknown metric values. The reliability of these estimates was compared with those derived from models incorporating taxonomic family and models without any taxonomic information. Overall, incorporating taxonomic family relatedness improved estimation accuracy across all metrics. For Salmonidae and Cyprinidae, estimates derived from Bayesian phylogenetic regression typically had the highest expected reliability. We used our methods to generate 274 estimates of unknown metric values for over 100 North American freshwater fish species.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cjfas-2017-0278</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0706-652X
ispartof Canadian journal of fisheries and aquatic sciences, 2018-11, Vol.75 (11), p.1878-1885
issn 0706-652X
1205-7533
language eng
recordid cdi_proquest_journals_2247986034
source NRC Research Press
subjects Bayesian analysis
Bayesian theory
Biogeny
Cyprinidae
Estimates
Fish
Fish eggs
Fish reproduction
Fishery research
Freshwater
Freshwater fish
Freshwater fishes
Growth
Heat tolerance (Biology)
Laboratory experimentation
Larvae
Larval stage
Mathematical models
Modelling
Phylogenetics
Phylogeny
Regression
Regression analysis
Reliability
Reproduction
Reproduction (biology)
Salmonidae
Spawning
Speciation
Species
Species identification
Statistical analysis
Statistical methods
Survival
Taxonomy
Temperature
Temperature effects
Temperature preferences
Temperature tolerance
Thermal response
Water
Water temperature
title Estimating thermal response metrics for North American freshwater fish using Bayesian phylogenetic regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20thermal%20response%20metrics%20for%20North%20American%20freshwater%20fish%20using%20Bayesian%20phylogenetic%20regression&rft.jtitle=Canadian%20journal%20of%20fisheries%20and%20aquatic%20sciences&rft.au=Hasnain,%20Sarah%20S&rft.date=2018-11-01&rft.volume=75&rft.issue=11&rft.spage=1878&rft.epage=1885&rft.pages=1878-1885&rft.issn=0706-652X&rft.eissn=1205-7533&rft_id=info:doi/10.1139/cjfas-2017-0278&rft_dat=%3Cgale_proqu%3EA560311531%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-2ef2b68e0803471f7c966ab233cd325118bcc0f1f0e21be1c9184351f5ba205d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2125005277&rft_id=info:pmid/&rft_galeid=A560311531&rfr_iscdi=true