Loading…
Depth imaging denoising of photon-counting lidar
Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the d...
Saved in:
Published in: | Applied optics (2004) 2019-06, Vol.58 (16), p.4390 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.58.004390 |