Loading…

Depth imaging denoising of photon-counting lidar

Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the d...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2019-06, Vol.58 (16), p.4390
Main Authors: Huang, Pengwei, He, Weiji, Gu, Guohua, Chen, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853
cites cdi_FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853
container_end_page
container_issue 16
container_start_page 4390
container_title Applied optics (2004)
container_volume 58
creator Huang, Pengwei
He, Weiji
Gu, Guohua
Chen, Qian
description Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar.
doi_str_mv 10.1364/AO.58.004390
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2248377989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248377989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EoqWwMaNKrCT4bF8cj1X5lCp1AYnNch27TdXGwU4G_ntStTDd0-mnd_ceIbdAc-CFeJwtcyxzSgVX9IyMGSBmHAo8J-NBqgxY-TUiVyltKeUolLwkIw4MgQk5JvTJtd1mWu_Num7W08o1oU4HFfy03YQuNJkNfdMdVru6MvGaXHizS-7mNCfk8-X5Y_6WLZav7_PZIrMcVJcxlKrw1gkhPR9-4tL7qvLCMTBC2lWBuKLGSmcsNwoZs6AQCmCgPKcl8gm5P_q2MXz3LnV6G_rYDCc1Y6LkUqpSDdTDkbIxpBSd120cssQfDVQf6tGzpcZSH-sZ8LuTab_au-of_uuD_wJTyF3L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248377989</pqid></control><display><type>article</type><title>Depth imaging denoising of photon-counting lidar</title><source>OSA_美国光学学会数据库1</source><creator>Huang, Pengwei ; He, Weiji ; Gu, Guohua ; Chen, Qian</creator><creatorcontrib>Huang, Pengwei ; He, Weiji ; Gu, Guohua ; Chen, Qian</creatorcontrib><description>Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.58.004390</identifier><identifier>PMID: 31251247</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; False alarms ; Image reconstruction ; Lidar ; Matched filters ; Noise reduction ; Photons ; Target recognition</subject><ispartof>Applied optics (2004), 2019-06, Vol.58 (16), p.4390</ispartof><rights>Copyright Optical Society of America Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853</citedby><cites>FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853</cites><orcidid>0000-0002-1909-302X ; 0000-0002-9383-1342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31251247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Pengwei</creatorcontrib><creatorcontrib>He, Weiji</creatorcontrib><creatorcontrib>Gu, Guohua</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><title>Depth imaging denoising of photon-counting lidar</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar.</description><subject>Algorithms</subject><subject>False alarms</subject><subject>Image reconstruction</subject><subject>Lidar</subject><subject>Matched filters</subject><subject>Noise reduction</subject><subject>Photons</subject><subject>Target recognition</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EoqWwMaNKrCT4bF8cj1X5lCp1AYnNch27TdXGwU4G_ntStTDd0-mnd_ceIbdAc-CFeJwtcyxzSgVX9IyMGSBmHAo8J-NBqgxY-TUiVyltKeUolLwkIw4MgQk5JvTJtd1mWu_Num7W08o1oU4HFfy03YQuNJkNfdMdVru6MvGaXHizS-7mNCfk8-X5Y_6WLZav7_PZIrMcVJcxlKrw1gkhPR9-4tL7qvLCMTBC2lWBuKLGSmcsNwoZs6AQCmCgPKcl8gm5P_q2MXz3LnV6G_rYDCc1Y6LkUqpSDdTDkbIxpBSd120cssQfDVQf6tGzpcZSH-sZ8LuTab_au-of_uuD_wJTyF3L</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Huang, Pengwei</creator><creator>He, Weiji</creator><creator>Gu, Guohua</creator><creator>Chen, Qian</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1909-302X</orcidid><orcidid>https://orcid.org/0000-0002-9383-1342</orcidid></search><sort><creationdate>20190601</creationdate><title>Depth imaging denoising of photon-counting lidar</title><author>Huang, Pengwei ; He, Weiji ; Gu, Guohua ; Chen, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>False alarms</topic><topic>Image reconstruction</topic><topic>Lidar</topic><topic>Matched filters</topic><topic>Noise reduction</topic><topic>Photons</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Pengwei</creatorcontrib><creatorcontrib>He, Weiji</creatorcontrib><creatorcontrib>Gu, Guohua</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Pengwei</au><au>He, Weiji</au><au>Gu, Guohua</au><au>Chen, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth imaging denoising of photon-counting lidar</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>58</volume><issue>16</issue><spage>4390</spage><pages>4390-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>31251247</pmid><doi>10.1364/AO.58.004390</doi><orcidid>https://orcid.org/0000-0002-1909-302X</orcidid><orcidid>https://orcid.org/0000-0002-9383-1342</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2019-06, Vol.58 (16), p.4390
issn 1559-128X
2155-3165
language eng
recordid cdi_proquest_journals_2248377989
source OSA_美国光学学会数据库1
subjects Algorithms
False alarms
Image reconstruction
Lidar
Matched filters
Noise reduction
Photons
Target recognition
title Depth imaging denoising of photon-counting lidar
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20imaging%20denoising%20of%20photon-counting%20lidar&rft.jtitle=Applied%20optics%20(2004)&rft.au=Huang,%20Pengwei&rft.date=2019-06-01&rft.volume=58&rft.issue=16&rft.spage=4390&rft.pages=4390-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.58.004390&rft_dat=%3Cproquest_cross%3E2248377989%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2248377989&rft_id=info:pmid/31251247&rfr_iscdi=true