Loading…
Depth imaging denoising of photon-counting lidar
Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the d...
Saved in:
Published in: | Applied optics (2004) 2019-06, Vol.58 (16), p.4390 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853 |
container_end_page | |
container_issue | 16 |
container_start_page | 4390 |
container_title | Applied optics (2004) |
container_volume | 58 |
creator | Huang, Pengwei He, Weiji Gu, Guohua Chen, Qian |
description | Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar. |
doi_str_mv | 10.1364/AO.58.004390 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2248377989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248377989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EoqWwMaNKrCT4bF8cj1X5lCp1AYnNch27TdXGwU4G_ntStTDd0-mnd_ceIbdAc-CFeJwtcyxzSgVX9IyMGSBmHAo8J-NBqgxY-TUiVyltKeUolLwkIw4MgQk5JvTJtd1mWu_Num7W08o1oU4HFfy03YQuNJkNfdMdVru6MvGaXHizS-7mNCfk8-X5Y_6WLZav7_PZIrMcVJcxlKrw1gkhPR9-4tL7qvLCMTBC2lWBuKLGSmcsNwoZs6AQCmCgPKcl8gm5P_q2MXz3LnV6G_rYDCc1Y6LkUqpSDdTDkbIxpBSd120cssQfDVQf6tGzpcZSH-sZ8LuTab_au-of_uuD_wJTyF3L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248377989</pqid></control><display><type>article</type><title>Depth imaging denoising of photon-counting lidar</title><source>OSA_美国光学学会数据库1</source><creator>Huang, Pengwei ; He, Weiji ; Gu, Guohua ; Chen, Qian</creator><creatorcontrib>Huang, Pengwei ; He, Weiji ; Gu, Guohua ; Chen, Qian</creatorcontrib><description>Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.58.004390</identifier><identifier>PMID: 31251247</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; False alarms ; Image reconstruction ; Lidar ; Matched filters ; Noise reduction ; Photons ; Target recognition</subject><ispartof>Applied optics (2004), 2019-06, Vol.58 (16), p.4390</ispartof><rights>Copyright Optical Society of America Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853</citedby><cites>FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853</cites><orcidid>0000-0002-1909-302X ; 0000-0002-9383-1342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31251247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Pengwei</creatorcontrib><creatorcontrib>He, Weiji</creatorcontrib><creatorcontrib>Gu, Guohua</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><title>Depth imaging denoising of photon-counting lidar</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar.</description><subject>Algorithms</subject><subject>False alarms</subject><subject>Image reconstruction</subject><subject>Lidar</subject><subject>Matched filters</subject><subject>Noise reduction</subject><subject>Photons</subject><subject>Target recognition</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EoqWwMaNKrCT4bF8cj1X5lCp1AYnNch27TdXGwU4G_ntStTDd0-mnd_ceIbdAc-CFeJwtcyxzSgVX9IyMGSBmHAo8J-NBqgxY-TUiVyltKeUolLwkIw4MgQk5JvTJtd1mWu_Num7W08o1oU4HFfy03YQuNJkNfdMdVru6MvGaXHizS-7mNCfk8-X5Y_6WLZav7_PZIrMcVJcxlKrw1gkhPR9-4tL7qvLCMTBC2lWBuKLGSmcsNwoZs6AQCmCgPKcl8gm5P_q2MXz3LnV6G_rYDCc1Y6LkUqpSDdTDkbIxpBSd120cssQfDVQf6tGzpcZSH-sZ8LuTab_au-of_uuD_wJTyF3L</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Huang, Pengwei</creator><creator>He, Weiji</creator><creator>Gu, Guohua</creator><creator>Chen, Qian</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1909-302X</orcidid><orcidid>https://orcid.org/0000-0002-9383-1342</orcidid></search><sort><creationdate>20190601</creationdate><title>Depth imaging denoising of photon-counting lidar</title><author>Huang, Pengwei ; He, Weiji ; Gu, Guohua ; Chen, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>False alarms</topic><topic>Image reconstruction</topic><topic>Lidar</topic><topic>Matched filters</topic><topic>Noise reduction</topic><topic>Photons</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Pengwei</creatorcontrib><creatorcontrib>He, Weiji</creatorcontrib><creatorcontrib>Gu, Guohua</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Pengwei</au><au>He, Weiji</au><au>Gu, Guohua</au><au>Chen, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth imaging denoising of photon-counting lidar</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>58</volume><issue>16</issue><spage>4390</spage><pages>4390-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>Photon-counting lidar systems have difficulty reconstructing target depth images due to ambient noise. In this paper, we propose a novel way of using correlative photons and spatial correlations to reduce the false alarm probability. Experimental results show that the root mean square error of the depth image reconstructed by the proposed algorithm can be 1.68 times and 1.11 times better than that of the fast depth imaging denoising algorithm and log-matched filter estimation. The experimental results show that the proposed algorithm can effectively improve the reconstructed image of photon-counting lidar.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>31251247</pmid><doi>10.1364/AO.58.004390</doi><orcidid>https://orcid.org/0000-0002-1909-302X</orcidid><orcidid>https://orcid.org/0000-0002-9383-1342</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2019-06, Vol.58 (16), p.4390 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_proquest_journals_2248377989 |
source | OSA_美国光学学会数据库1 |
subjects | Algorithms False alarms Image reconstruction Lidar Matched filters Noise reduction Photons Target recognition |
title | Depth imaging denoising of photon-counting lidar |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20imaging%20denoising%20of%20photon-counting%20lidar&rft.jtitle=Applied%20optics%20(2004)&rft.au=Huang,%20Pengwei&rft.date=2019-06-01&rft.volume=58&rft.issue=16&rft.spage=4390&rft.pages=4390-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.58.004390&rft_dat=%3Cproquest_cross%3E2248377989%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-25796fce447f321537ffddf4e21a47cb655b0ac7eac3a9522c195161219f30853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2248377989&rft_id=info:pmid/31251247&rfr_iscdi=true |