Loading…
Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter
The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV r...
Saved in:
Published in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2019-07, Vol.66 (7), p.1272-1276 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163 |
container_end_page | 1276 |
container_issue | 7 |
container_start_page | 1272 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 66 |
creator | Lu, Lu Wang, Wenyuan Yang, Xiaomin Wu, Wei Zhu, Guangya |
description | The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV recursive Geman-McClure, which is an adaptive recursive Volterra algorithm based on the Geman-McClure estimator. The mean stability and mean-square stability (steady-state excess mean square error) of the proposed algorithm is analyzed in detail. Simulation results support the analytical findings and show the improved performance of the proposed new SOV filter as compared with existing algorithms in both Gaussian and impulsive noise environments. |
doi_str_mv | 10.1109/TCSII.2018.2875039 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2248678837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8486724</ieee_id><sourcerecordid>2248678837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb_gG4CrlPnlczMUkJbA5WCrW6HycyNpORRZxLBf29ii4vLPYtzzuV-CN0TvCAEq6d9tsvzBcVELqgUCWbqAs1IksiYCUUuJ81VLAQX1-gmhAPGVGFGZ2j7BnbwofqGaA2NaeNXm9WDh2gZ-qoxfeejcpy8OdbQQNtX7We0A9u1Lt56Bz766OoevDfRqprELboqTR3g7rzn6H213Gcv8Wa7zrPnTWypSvq4LAtlKC8ol1wm1gnpnE0wd2AolY4xniRALDGFUdhJYo0SRcqd40WZKpKyOXo89R599zVA6PWhG3w7ntR0LE2FlEyMLnpyWd-F4KHURz9-5X80wXoCp__A6QmcPoMbQw-nUAUA_wE5lVLOfgH5w2pm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248678837</pqid></control><display><type>article</type><title>Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Lu ; Wang, Wenyuan ; Yang, Xiaomin ; Wu, Wei ; Zhu, Guangya</creator><creatorcontrib>Lu, Lu ; Wang, Wenyuan ; Yang, Xiaomin ; Wu, Wei ; Zhu, Guangya</creatorcontrib><description>The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV recursive Geman-McClure, which is an adaptive recursive Volterra algorithm based on the Geman-McClure estimator. The mean stability and mean-square stability (steady-state excess mean square error) of the proposed algorithm is analyzed in detail. Simulation results support the analytical findings and show the improved performance of the proposed new SOV filter as compared with existing algorithms in both Gaussian and impulsive noise environments.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2018.2875039</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithm ; Adaptive algorithms ; Adaptive filters ; Circuit stability ; Circuits and systems ; Computer simulation ; Error analysis ; Geman-McClure estimator ; Nonlinear systems ; Optimization ; Probability density function ; recursive version ; Stability analysis ; Stability criteria ; Steady-state ; α-stable noise</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2019-07, Vol.66 (7), p.1272-1276</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163</citedby><cites>FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163</cites><orcidid>0000-0002-6077-0977 ; 0000-0001-5769-9340 ; 0000-0002-0378-0933 ; 0000-0002-1094-3841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8486724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Wang, Wenyuan</creatorcontrib><creatorcontrib>Yang, Xiaomin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhu, Guangya</creatorcontrib><title>Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV recursive Geman-McClure, which is an adaptive recursive Volterra algorithm based on the Geman-McClure estimator. The mean stability and mean-square stability (steady-state excess mean square error) of the proposed algorithm is analyzed in detail. Simulation results support the analytical findings and show the improved performance of the proposed new SOV filter as compared with existing algorithms in both Gaussian and impulsive noise environments.</description><subject>Adaptive algorithm</subject><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Circuit stability</subject><subject>Circuits and systems</subject><subject>Computer simulation</subject><subject>Error analysis</subject><subject>Geman-McClure estimator</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Probability density function</subject><subject>recursive version</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Steady-state</subject><subject>α-stable noise</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFb_gG4CrlPnlczMUkJbA5WCrW6HycyNpORRZxLBf29ii4vLPYtzzuV-CN0TvCAEq6d9tsvzBcVELqgUCWbqAs1IksiYCUUuJ81VLAQX1-gmhAPGVGFGZ2j7BnbwofqGaA2NaeNXm9WDh2gZ-qoxfeejcpy8OdbQQNtX7We0A9u1Lt56Bz766OoevDfRqprELboqTR3g7rzn6H213Gcv8Wa7zrPnTWypSvq4LAtlKC8ol1wm1gnpnE0wd2AolY4xniRALDGFUdhJYo0SRcqd40WZKpKyOXo89R599zVA6PWhG3w7ntR0LE2FlEyMLnpyWd-F4KHURz9-5X80wXoCp__A6QmcPoMbQw-nUAUA_wE5lVLOfgH5w2pm</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Lu, Lu</creator><creator>Wang, Wenyuan</creator><creator>Yang, Xiaomin</creator><creator>Wu, Wei</creator><creator>Zhu, Guangya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6077-0977</orcidid><orcidid>https://orcid.org/0000-0001-5769-9340</orcidid><orcidid>https://orcid.org/0000-0002-0378-0933</orcidid><orcidid>https://orcid.org/0000-0002-1094-3841</orcidid></search><sort><creationdate>20190701</creationdate><title>Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter</title><author>Lu, Lu ; Wang, Wenyuan ; Yang, Xiaomin ; Wu, Wei ; Zhu, Guangya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Circuit stability</topic><topic>Circuits and systems</topic><topic>Computer simulation</topic><topic>Error analysis</topic><topic>Geman-McClure estimator</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Probability density function</topic><topic>recursive version</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Steady-state</topic><topic>α-stable noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Wang, Wenyuan</creatorcontrib><creatorcontrib>Yang, Xiaomin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhu, Guangya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Lu</au><au>Wang, Wenyuan</au><au>Yang, Xiaomin</au><au>Wu, Wei</au><au>Zhu, Guangya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>66</volume><issue>7</issue><spage>1272</spage><epage>1276</epage><pages>1272-1276</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV recursive Geman-McClure, which is an adaptive recursive Volterra algorithm based on the Geman-McClure estimator. The mean stability and mean-square stability (steady-state excess mean square error) of the proposed algorithm is analyzed in detail. Simulation results support the analytical findings and show the improved performance of the proposed new SOV filter as compared with existing algorithms in both Gaussian and impulsive noise environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2018.2875039</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6077-0977</orcidid><orcidid>https://orcid.org/0000-0001-5769-9340</orcidid><orcidid>https://orcid.org/0000-0002-0378-0933</orcidid><orcidid>https://orcid.org/0000-0002-1094-3841</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2019-07, Vol.66 (7), p.1272-1276 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2248678837 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive algorithm Adaptive algorithms Adaptive filters Circuit stability Circuits and systems Computer simulation Error analysis Geman-McClure estimator Nonlinear systems Optimization Probability density function recursive version Stability analysis Stability criteria Steady-state α-stable noise |
title | Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20Geman-McClure%20Estimator%20for%20Implementing%20Second-Order%20Volterra%20Filter&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Lu,%20Lu&rft.date=2019-07-01&rft.volume=66&rft.issue=7&rft.spage=1272&rft.epage=1276&rft.pages=1272-1276&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2018.2875039&rft_dat=%3Cproquest_ieee_%3E2248678837%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2248678837&rft_id=info:pmid/&rft_ieee_id=8486724&rfr_iscdi=true |