Loading…

Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter

The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2019-07, Vol.66 (7), p.1272-1276
Main Authors: Lu, Lu, Wang, Wenyuan, Yang, Xiaomin, Wu, Wei, Zhu, Guangya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163
cites cdi_FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163
container_end_page 1276
container_issue 7
container_start_page 1272
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 66
creator Lu, Lu
Wang, Wenyuan
Yang, Xiaomin
Wu, Wei
Zhu, Guangya
description The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV recursive Geman-McClure, which is an adaptive recursive Volterra algorithm based on the Geman-McClure estimator. The mean stability and mean-square stability (steady-state excess mean square error) of the proposed algorithm is analyzed in detail. Simulation results support the analytical findings and show the improved performance of the proposed new SOV filter as compared with existing algorithms in both Gaussian and impulsive noise environments.
doi_str_mv 10.1109/TCSII.2018.2875039
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2248678837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8486724</ieee_id><sourcerecordid>2248678837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb_gG4CrlPnlczMUkJbA5WCrW6HycyNpORRZxLBf29ii4vLPYtzzuV-CN0TvCAEq6d9tsvzBcVELqgUCWbqAs1IksiYCUUuJ81VLAQX1-gmhAPGVGFGZ2j7BnbwofqGaA2NaeNXm9WDh2gZ-qoxfeejcpy8OdbQQNtX7We0A9u1Lt56Bz766OoevDfRqprELboqTR3g7rzn6H213Gcv8Wa7zrPnTWypSvq4LAtlKC8ol1wm1gnpnE0wd2AolY4xniRALDGFUdhJYo0SRcqd40WZKpKyOXo89R599zVA6PWhG3w7ntR0LE2FlEyMLnpyWd-F4KHURz9-5X80wXoCp__A6QmcPoMbQw-nUAUA_wE5lVLOfgH5w2pm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248678837</pqid></control><display><type>article</type><title>Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Lu ; Wang, Wenyuan ; Yang, Xiaomin ; Wu, Wei ; Zhu, Guangya</creator><creatorcontrib>Lu, Lu ; Wang, Wenyuan ; Yang, Xiaomin ; Wu, Wei ; Zhu, Guangya</creatorcontrib><description>The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV recursive Geman-McClure, which is an adaptive recursive Volterra algorithm based on the Geman-McClure estimator. The mean stability and mean-square stability (steady-state excess mean square error) of the proposed algorithm is analyzed in detail. Simulation results support the analytical findings and show the improved performance of the proposed new SOV filter as compared with existing algorithms in both Gaussian and impulsive noise environments.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2018.2875039</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithm ; Adaptive algorithms ; Adaptive filters ; Circuit stability ; Circuits and systems ; Computer simulation ; Error analysis ; Geman-McClure estimator ; Nonlinear systems ; Optimization ; Probability density function ; recursive version ; Stability analysis ; Stability criteria ; Steady-state ; α-stable noise</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2019-07, Vol.66 (7), p.1272-1276</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163</citedby><cites>FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163</cites><orcidid>0000-0002-6077-0977 ; 0000-0001-5769-9340 ; 0000-0002-0378-0933 ; 0000-0002-1094-3841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8486724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Wang, Wenyuan</creatorcontrib><creatorcontrib>Yang, Xiaomin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhu, Guangya</creatorcontrib><title>Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV recursive Geman-McClure, which is an adaptive recursive Volterra algorithm based on the Geman-McClure estimator. The mean stability and mean-square stability (steady-state excess mean square error) of the proposed algorithm is analyzed in detail. Simulation results support the analytical findings and show the improved performance of the proposed new SOV filter as compared with existing algorithms in both Gaussian and impulsive noise environments.</description><subject>Adaptive algorithm</subject><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Circuit stability</subject><subject>Circuits and systems</subject><subject>Computer simulation</subject><subject>Error analysis</subject><subject>Geman-McClure estimator</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Probability density function</subject><subject>recursive version</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Steady-state</subject><subject>α-stable noise</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFb_gG4CrlPnlczMUkJbA5WCrW6HycyNpORRZxLBf29ii4vLPYtzzuV-CN0TvCAEq6d9tsvzBcVELqgUCWbqAs1IksiYCUUuJ81VLAQX1-gmhAPGVGFGZ2j7BnbwofqGaA2NaeNXm9WDh2gZ-qoxfeejcpy8OdbQQNtX7We0A9u1Lt56Bz766OoevDfRqprELboqTR3g7rzn6H213Gcv8Wa7zrPnTWypSvq4LAtlKC8ol1wm1gnpnE0wd2AolY4xniRALDGFUdhJYo0SRcqd40WZKpKyOXo89R599zVA6PWhG3w7ntR0LE2FlEyMLnpyWd-F4KHURz9-5X80wXoCp__A6QmcPoMbQw-nUAUA_wE5lVLOfgH5w2pm</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Lu, Lu</creator><creator>Wang, Wenyuan</creator><creator>Yang, Xiaomin</creator><creator>Wu, Wei</creator><creator>Zhu, Guangya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6077-0977</orcidid><orcidid>https://orcid.org/0000-0001-5769-9340</orcidid><orcidid>https://orcid.org/0000-0002-0378-0933</orcidid><orcidid>https://orcid.org/0000-0002-1094-3841</orcidid></search><sort><creationdate>20190701</creationdate><title>Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter</title><author>Lu, Lu ; Wang, Wenyuan ; Yang, Xiaomin ; Wu, Wei ; Zhu, Guangya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Circuit stability</topic><topic>Circuits and systems</topic><topic>Computer simulation</topic><topic>Error analysis</topic><topic>Geman-McClure estimator</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Probability density function</topic><topic>recursive version</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Steady-state</topic><topic>α-stable noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Wang, Wenyuan</creatorcontrib><creatorcontrib>Yang, Xiaomin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhu, Guangya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Lu</au><au>Wang, Wenyuan</au><au>Yang, Xiaomin</au><au>Wu, Wei</au><au>Zhu, Guangya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>66</volume><issue>7</issue><spage>1272</spage><epage>1276</epage><pages>1272-1276</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>The second-order Volterra (SOV) filter is a powerful tool for modeling the nonlinear system. The Geman-McClure estimator, whose loss function is non-convex and has been proven to be a robust and efficient optimization criterion for learning system. In this brief, we present a SOV filter, named SOV recursive Geman-McClure, which is an adaptive recursive Volterra algorithm based on the Geman-McClure estimator. The mean stability and mean-square stability (steady-state excess mean square error) of the proposed algorithm is analyzed in detail. Simulation results support the analytical findings and show the improved performance of the proposed new SOV filter as compared with existing algorithms in both Gaussian and impulsive noise environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2018.2875039</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6077-0977</orcidid><orcidid>https://orcid.org/0000-0001-5769-9340</orcidid><orcidid>https://orcid.org/0000-0002-0378-0933</orcidid><orcidid>https://orcid.org/0000-0002-1094-3841</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2019-07, Vol.66 (7), p.1272-1276
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2248678837
source IEEE Electronic Library (IEL) Journals
subjects Adaptive algorithm
Adaptive algorithms
Adaptive filters
Circuit stability
Circuits and systems
Computer simulation
Error analysis
Geman-McClure estimator
Nonlinear systems
Optimization
Probability density function
recursive version
Stability analysis
Stability criteria
Steady-state
α-stable noise
title Recursive Geman-McClure Estimator for Implementing Second-Order Volterra Filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20Geman-McClure%20Estimator%20for%20Implementing%20Second-Order%20Volterra%20Filter&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Lu,%20Lu&rft.date=2019-07-01&rft.volume=66&rft.issue=7&rft.spage=1272&rft.epage=1276&rft.pages=1272-1276&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2018.2875039&rft_dat=%3Cproquest_ieee_%3E2248678837%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-ffb9a24b248485cd78ddc504dea228d33455e1c1aba90d81ca97b64dd4bf69163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2248678837&rft_id=info:pmid/&rft_ieee_id=8486724&rfr_iscdi=true