Loading…

Bilinear maps and graphs

Let V be a linear space of arbitrary dimension and over an arbitrary base field F, endowed with a bilinear map f:V×V→V. A basis B={vi}i∈I of V is an f-basis if for any i,j∈I we have that f(vi,vj)∈Fvk for some k∈I. We associate to any triplet (V,f,B) an adequate graph (V,E). By arguing on this graph...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2019-06, Vol.263, p.69-78
Main Authors: Martín, Antonio J. Calderón, Izquierdo, Francisco J. Navarro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-de6528baf62197e5928e59bbe9b9570ba24f6b44b215f6cb9b43bd75587f589b3
cites cdi_FETCH-LOGICAL-c368t-de6528baf62197e5928e59bbe9b9570ba24f6b44b215f6cb9b43bd75587f589b3
container_end_page 78
container_issue
container_start_page 69
container_title Discrete Applied Mathematics
container_volume 263
creator Martín, Antonio J. Calderón
Izquierdo, Francisco J. Navarro
description Let V be a linear space of arbitrary dimension and over an arbitrary base field F, endowed with a bilinear map f:V×V→V. A basis B={vi}i∈I of V is an f-basis if for any i,j∈I we have that f(vi,vj)∈Fvk for some k∈I. We associate to any triplet (V,f,B) an adequate graph (V,E). By arguing on this graph we show that V decomposes as a direct sum of strongly f-invariant linear subspaces, each one being associated to one connected component of (V,E). Also the B-semisimplicity and the B-simplicity of V are characterized in terms of the associated graph.
doi_str_mv 10.1016/j.dam.2018.03.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250579659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18301112</els_id><sourcerecordid>2250579659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-de6528baf62197e5928e59bbe9b9570ba24f6b44b215f6cb9b43bd75587f589b3</originalsourceid><addsrcrecordid>eNp9kMtLxDAQh4MoWFfveit4bp2kzQtPuqwPWPCi4C0kaaop24dJV_C_N0s9e5lh4PfNDB9CVxhKDJjddGWj-5IAFiVUJRA4QhkWnBSMc3yMspRhBcHi_RSdxdgBAE5Thi7v_c4PToe811PM9dDkH0FPn_EcnbR6F93FX1-ht4fN6_qp2L48Pq_vtoWtmJiLxjFKhNEtI1hyRyURqRjjpJGUg9Gkbpmpa0MwbZk10tSVaTilgrdUSFOt0PWydwrj197FWXXjPgzppCKEAuWSUZlSeEnZMMYYXKum4HsdfhQGdRCgOpUEqIMABZVKAhJzuzAuvf_tXVDRejdY1_jg7Kya0f9D_wIAvmC3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250579659</pqid></control><display><type>article</type><title>Bilinear maps and graphs</title><source>ScienceDirect Freedom Collection</source><creator>Martín, Antonio J. Calderón ; Izquierdo, Francisco J. Navarro</creator><creatorcontrib>Martín, Antonio J. Calderón ; Izquierdo, Francisco J. Navarro</creatorcontrib><description>Let V be a linear space of arbitrary dimension and over an arbitrary base field F, endowed with a bilinear map f:V×V→V. A basis B={vi}i∈I of V is an f-basis if for any i,j∈I we have that f(vi,vj)∈Fvk for some k∈I. We associate to any triplet (V,f,B) an adequate graph (V,E). By arguing on this graph we show that V decomposes as a direct sum of strongly f-invariant linear subspaces, each one being associated to one connected component of (V,E). Also the B-semisimplicity and the B-simplicity of V are characterized in terms of the associated graph.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.03.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Bilinear map ; Decomposition theorem ; Graph ; Linear space ; Subspaces</subject><ispartof>Discrete Applied Mathematics, 2019-06, Vol.263, p.69-78</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 30, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-de6528baf62197e5928e59bbe9b9570ba24f6b44b215f6cb9b43bd75587f589b3</citedby><cites>FETCH-LOGICAL-c368t-de6528baf62197e5928e59bbe9b9570ba24f6b44b215f6cb9b43bd75587f589b3</cites><orcidid>0000-0002-3351-7271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Martín, Antonio J. Calderón</creatorcontrib><creatorcontrib>Izquierdo, Francisco J. Navarro</creatorcontrib><title>Bilinear maps and graphs</title><title>Discrete Applied Mathematics</title><description>Let V be a linear space of arbitrary dimension and over an arbitrary base field F, endowed with a bilinear map f:V×V→V. A basis B={vi}i∈I of V is an f-basis if for any i,j∈I we have that f(vi,vj)∈Fvk for some k∈I. We associate to any triplet (V,f,B) an adequate graph (V,E). By arguing on this graph we show that V decomposes as a direct sum of strongly f-invariant linear subspaces, each one being associated to one connected component of (V,E). Also the B-semisimplicity and the B-simplicity of V are characterized in terms of the associated graph.</description><subject>Algebra</subject><subject>Bilinear map</subject><subject>Decomposition theorem</subject><subject>Graph</subject><subject>Linear space</subject><subject>Subspaces</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLxDAQh4MoWFfveit4bp2kzQtPuqwPWPCi4C0kaaop24dJV_C_N0s9e5lh4PfNDB9CVxhKDJjddGWj-5IAFiVUJRA4QhkWnBSMc3yMspRhBcHi_RSdxdgBAE5Thi7v_c4PToe811PM9dDkH0FPn_EcnbR6F93FX1-ht4fN6_qp2L48Pq_vtoWtmJiLxjFKhNEtI1hyRyURqRjjpJGUg9Gkbpmpa0MwbZk10tSVaTilgrdUSFOt0PWydwrj197FWXXjPgzppCKEAuWSUZlSeEnZMMYYXKum4HsdfhQGdRCgOpUEqIMABZVKAhJzuzAuvf_tXVDRejdY1_jg7Kya0f9D_wIAvmC3</recordid><startdate>20190630</startdate><enddate>20190630</enddate><creator>Martín, Antonio J. Calderón</creator><creator>Izquierdo, Francisco J. Navarro</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3351-7271</orcidid></search><sort><creationdate>20190630</creationdate><title>Bilinear maps and graphs</title><author>Martín, Antonio J. Calderón ; Izquierdo, Francisco J. Navarro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-de6528baf62197e5928e59bbe9b9570ba24f6b44b215f6cb9b43bd75587f589b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Bilinear map</topic><topic>Decomposition theorem</topic><topic>Graph</topic><topic>Linear space</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín, Antonio J. Calderón</creatorcontrib><creatorcontrib>Izquierdo, Francisco J. Navarro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín, Antonio J. Calderón</au><au>Izquierdo, Francisco J. Navarro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilinear maps and graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2019-06-30</date><risdate>2019</risdate><volume>263</volume><spage>69</spage><epage>78</epage><pages>69-78</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Let V be a linear space of arbitrary dimension and over an arbitrary base field F, endowed with a bilinear map f:V×V→V. A basis B={vi}i∈I of V is an f-basis if for any i,j∈I we have that f(vi,vj)∈Fvk for some k∈I. We associate to any triplet (V,f,B) an adequate graph (V,E). By arguing on this graph we show that V decomposes as a direct sum of strongly f-invariant linear subspaces, each one being associated to one connected component of (V,E). Also the B-semisimplicity and the B-simplicity of V are characterized in terms of the associated graph.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.03.020</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3351-7271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2019-06, Vol.263, p.69-78
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2250579659
source ScienceDirect Freedom Collection
subjects Algebra
Bilinear map
Decomposition theorem
Graph
Linear space
Subspaces
title Bilinear maps and graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilinear%20maps%20and%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Mart%C3%ADn,%20Antonio%20J.%20Calder%C3%B3n&rft.date=2019-06-30&rft.volume=263&rft.spage=69&rft.epage=78&rft.pages=69-78&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.03.020&rft_dat=%3Cproquest_cross%3E2250579659%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-de6528baf62197e5928e59bbe9b9570ba24f6b44b215f6cb9b43bd75587f589b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250579659&rft_id=info:pmid/&rfr_iscdi=true