Loading…
How does a reversible electrode respond in a.c. voltammetry? Part 2: solutions for the periodic current amplitudes
In a.c. voltammetry, a programmed electrical potential—a linear ramp modulated by a sine wave of frequency ω and modest amplitude—is applied to the working electrode of a voltammetric cell. If the electrolyte solution contains a solute that undergoes a reversible electron exchange at the electrode,...
Saved in:
Published in: | Journal of solid state electrochemistry 2019-07, Vol.23 (7), p.2061-2071 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-145fa56022daf96bc3013584f5cafa8eaca6f25577b74155c301a01577bd250c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-145fa56022daf96bc3013584f5cafa8eaca6f25577b74155c301a01577bd250c3 |
container_end_page | 2071 |
container_issue | 7 |
container_start_page | 2061 |
container_title | Journal of solid state electrochemistry |
container_volume | 23 |
creator | Myland, Jan C. Oldham, Keith B. |
description | In a.c. voltammetry, a programmed electrical potential—a linear ramp modulated by a sine wave of frequency
ω
and modest amplitude—is applied to the working electrode of a voltammetric cell. If the electrolyte solution contains a solute that undergoes a reversible electron exchange at the electrode, then the ensuing faradaic current incorporates two aperiodic components, together with a pseudosinusoidal component of every frequency that is an integer multiple of
ω
. An exact mathematical model is presented that predicts how the time-dependent amplitudes of each of these latter harmonic currents evolve during the experiment. This analytical model, which does not invoke simulation or Fourier transformation, is useful only at early voltammetric times, but a numerical scheme extends the solution to encompass the entire scan. Amazingly, the time-dependent amplitudes of the periodic currents match their semiintegrals in shape. |
doi_str_mv | 10.1007/s10008-019-04238-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250630574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250630574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-145fa56022daf96bc3013584f5cafa8eaca6f25577b74155c301a01577bd250c3</originalsourceid><addsrcrecordid>eNp9UE1PwzAMrRBIjI8_wCkS5w4nadqOC0ITMKRJcIBzlKUudOqa4qRD-_dkKxI3Lvaz_d6z9JLkisOUAxQ3PlYoU-CzFDIhIzpKJjyTMoUiL48PWKRlVpanyZn3awBe5BwmCS3cN6scemYY4RbJN6sWGbZoA7kK49L3rqtY0zEztVO2dW0wmw0G2t2xV0OBiVvmXTuExnWe1Y5Y-ETWIzWuaiyzAxF2gZlN3zZhqNBfJCe1aT1e_vbz5P3x4W2-SJcvT8_z-2VqpcpDyjNVG5WDEJWpZ_nKSuBSlVmtrKlNicaavBZKFcWqyLhS-7sBvp8rocDK8-R69O3JfQ3og167gbr4UotIyCWoIossMbIsOe8Ja91TszG00xz0Pls9ZqtjtvqQrYYokqPIR3L3gfRn_Y_qBwYjfMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250630574</pqid></control><display><type>article</type><title>How does a reversible electrode respond in a.c. voltammetry? Part 2: solutions for the periodic current amplitudes</title><source>Springer Nature</source><creator>Myland, Jan C. ; Oldham, Keith B.</creator><creatorcontrib>Myland, Jan C. ; Oldham, Keith B.</creatorcontrib><description>In a.c. voltammetry, a programmed electrical potential—a linear ramp modulated by a sine wave of frequency
ω
and modest amplitude—is applied to the working electrode of a voltammetric cell. If the electrolyte solution contains a solute that undergoes a reversible electron exchange at the electrode, then the ensuing faradaic current incorporates two aperiodic components, together with a pseudosinusoidal component of every frequency that is an integer multiple of
ω
. An exact mathematical model is presented that predicts how the time-dependent amplitudes of each of these latter harmonic currents evolve during the experiment. This analytical model, which does not invoke simulation or Fourier transformation, is useful only at early voltammetric times, but a numerical scheme extends the solution to encompass the entire scan. Amazingly, the time-dependent amplitudes of the periodic currents match their semiintegrals in shape.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-019-04238-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amplitudes ; Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Condensed Matter Physics ; Electrochemistry ; Electrodes ; Energy Storage ; Fourier transforms ; Mathematical models ; Original Paper ; Physical Chemistry ; Sine waves ; Time dependence ; Voltammetry</subject><ispartof>Journal of solid state electrochemistry, 2019-07, Vol.23 (7), p.2061-2071</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-145fa56022daf96bc3013584f5cafa8eaca6f25577b74155c301a01577bd250c3</citedby><cites>FETCH-LOGICAL-c356t-145fa56022daf96bc3013584f5cafa8eaca6f25577b74155c301a01577bd250c3</cites><orcidid>0000-0002-0328-7479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Myland, Jan C.</creatorcontrib><creatorcontrib>Oldham, Keith B.</creatorcontrib><title>How does a reversible electrode respond in a.c. voltammetry? Part 2: solutions for the periodic current amplitudes</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>In a.c. voltammetry, a programmed electrical potential—a linear ramp modulated by a sine wave of frequency
ω
and modest amplitude—is applied to the working electrode of a voltammetric cell. If the electrolyte solution contains a solute that undergoes a reversible electron exchange at the electrode, then the ensuing faradaic current incorporates two aperiodic components, together with a pseudosinusoidal component of every frequency that is an integer multiple of
ω
. An exact mathematical model is presented that predicts how the time-dependent amplitudes of each of these latter harmonic currents evolve during the experiment. This analytical model, which does not invoke simulation or Fourier transformation, is useful only at early voltammetric times, but a numerical scheme extends the solution to encompass the entire scan. Amazingly, the time-dependent amplitudes of the periodic currents match their semiintegrals in shape.</description><subject>Amplitudes</subject><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy Storage</subject><subject>Fourier transforms</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Sine waves</subject><subject>Time dependence</subject><subject>Voltammetry</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMrRBIjI8_wCkS5w4nadqOC0ITMKRJcIBzlKUudOqa4qRD-_dkKxI3Lvaz_d6z9JLkisOUAxQ3PlYoU-CzFDIhIzpKJjyTMoUiL48PWKRlVpanyZn3awBe5BwmCS3cN6scemYY4RbJN6sWGbZoA7kK49L3rqtY0zEztVO2dW0wmw0G2t2xV0OBiVvmXTuExnWe1Y5Y-ETWIzWuaiyzAxF2gZlN3zZhqNBfJCe1aT1e_vbz5P3x4W2-SJcvT8_z-2VqpcpDyjNVG5WDEJWpZ_nKSuBSlVmtrKlNicaavBZKFcWqyLhS-7sBvp8rocDK8-R69O3JfQ3og167gbr4UotIyCWoIossMbIsOe8Ja91TszG00xz0Pls9ZqtjtvqQrYYokqPIR3L3gfRn_Y_qBwYjfMQ</recordid><startdate>20190719</startdate><enddate>20190719</enddate><creator>Myland, Jan C.</creator><creator>Oldham, Keith B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0328-7479</orcidid></search><sort><creationdate>20190719</creationdate><title>How does a reversible electrode respond in a.c. voltammetry? Part 2: solutions for the periodic current amplitudes</title><author>Myland, Jan C. ; Oldham, Keith B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-145fa56022daf96bc3013584f5cafa8eaca6f25577b74155c301a01577bd250c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy Storage</topic><topic>Fourier transforms</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Sine waves</topic><topic>Time dependence</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myland, Jan C.</creatorcontrib><creatorcontrib>Oldham, Keith B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myland, Jan C.</au><au>Oldham, Keith B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How does a reversible electrode respond in a.c. voltammetry? Part 2: solutions for the periodic current amplitudes</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2019-07-19</date><risdate>2019</risdate><volume>23</volume><issue>7</issue><spage>2061</spage><epage>2071</epage><pages>2061-2071</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>In a.c. voltammetry, a programmed electrical potential—a linear ramp modulated by a sine wave of frequency
ω
and modest amplitude—is applied to the working electrode of a voltammetric cell. If the electrolyte solution contains a solute that undergoes a reversible electron exchange at the electrode, then the ensuing faradaic current incorporates two aperiodic components, together with a pseudosinusoidal component of every frequency that is an integer multiple of
ω
. An exact mathematical model is presented that predicts how the time-dependent amplitudes of each of these latter harmonic currents evolve during the experiment. This analytical model, which does not invoke simulation or Fourier transformation, is useful only at early voltammetric times, but a numerical scheme extends the solution to encompass the entire scan. Amazingly, the time-dependent amplitudes of the periodic currents match their semiintegrals in shape.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-019-04238-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0328-7479</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2019-07, Vol.23 (7), p.2061-2071 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_proquest_journals_2250630574 |
source | Springer Nature |
subjects | Amplitudes Analytical Chemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer simulation Condensed Matter Physics Electrochemistry Electrodes Energy Storage Fourier transforms Mathematical models Original Paper Physical Chemistry Sine waves Time dependence Voltammetry |
title | How does a reversible electrode respond in a.c. voltammetry? Part 2: solutions for the periodic current amplitudes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20does%20a%20reversible%20electrode%20respond%20in%20a.c.%20voltammetry?%20Part%202:%20solutions%20for%20the%20periodic%20current%20amplitudes&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Myland,%20Jan%20C.&rft.date=2019-07-19&rft.volume=23&rft.issue=7&rft.spage=2061&rft.epage=2071&rft.pages=2061-2071&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-019-04238-0&rft_dat=%3Cproquest_cross%3E2250630574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-145fa56022daf96bc3013584f5cafa8eaca6f25577b74155c301a01577bd250c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250630574&rft_id=info:pmid/&rfr_iscdi=true |