Loading…
Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers
In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have be...
Saved in:
Published in: | ACM transactions on mathematical software 2005-06, Vol.31 (2), p.228-238 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3 |
container_end_page | 238 |
container_issue | 2 |
container_start_page | 228 |
container_title | ACM transactions on mathematical software |
container_volume | 31 |
creator | FRAYSSE, Valérie GIRAUD, Luc CERFACS, Serge Gratton LANGOU, Julien |
description | In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have been implemented in Fortran 77 using the reverse communication mechanism for the matrix-vector product, the preconditioning and the dot product computations. For distributed memory computation, several orthogonalization procedures have been implemented to reduce the cost of the dot product calculation, which is a well-known bottleneck of efficiency for the Krylov methods. Either implicit or explicit calculation of the residual at restart are possible depending on the actual cost of the matrix-vector product. Finally the implemented stopping criterion is based on a normwise backward error. |
doi_str_mv | 10.1145/1067967.1067970 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_225076332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>863004471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3</originalsourceid><addsrcrecordid>eNpFkM9LwzAcxYMoOKdnr0Hw2O2bpElab2PMKUwEf5xLliZbR9vUJAX9761bwdO7fN573-9D6JbAjJCUzwkImQs5O6qEMzQhnMtE0pyfowlAniWMA1yiqxAOAECJJBNkF_XO-SruG5ylFD_gBQ4mYmfx-uVt9Y6962PVmoCt89gbVWPVlli7pqvNN1ZHp4mVDti1eF_t9rgzfmAb1Wpz5PpofLhGF1bVwdyMOkWfj6uP5VOyeV0_LxebRFNOY0KsTa3YpsBBWJtBDoRoWrJMi7IkqaREiJQqLW3GrBI0k1pRyvItMyC2UrEpujvldt599SbE4uB63w6VBaUcpGCMDtD8BGnvQvDGFp2vGuV_CgLF35bFuGUxbjk47sdYFbSqrR--q8K_TeTpcCxnvxW-cdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>225076332</pqid></control><display><type>article</type><title>Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>FRAYSSE, Valérie ; GIRAUD, Luc ; CERFACS, Serge Gratton ; LANGOU, Julien</creator><creatorcontrib>FRAYSSE, Valérie ; GIRAUD, Luc ; CERFACS, Serge Gratton ; LANGOU, Julien</creatorcontrib><description>In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have been implemented in Fortran 77 using the reverse communication mechanism for the matrix-vector product, the preconditioning and the dot product computations. For distributed memory computation, several orthogonalization procedures have been implemented to reduce the cost of the dot product calculation, which is a well-known bottleneck of efficiency for the Krylov methods. Either implicit or explicit calculation of the residual at restart are possible depending on the actual cost of the matrix-vector product. Finally the implemented stopping criterion is based on a normwise backward error.</description><identifier>ISSN: 0098-3500</identifier><identifier>EISSN: 1557-7295</identifier><identifier>DOI: 10.1145/1067967.1067970</identifier><identifier>CODEN: ACMSCU</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Distributed shared memory ; Exact sciences and technology ; Mathematics ; Matrix ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use ; Software ; Software engineering ; Studies</subject><ispartof>ACM transactions on mathematical software, 2005-06, Vol.31 (2), p.228-238</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Association for Computing Machinery Jun 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16948095$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FRAYSSE, Valérie</creatorcontrib><creatorcontrib>GIRAUD, Luc</creatorcontrib><creatorcontrib>CERFACS, Serge Gratton</creatorcontrib><creatorcontrib>LANGOU, Julien</creatorcontrib><title>Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers</title><title>ACM transactions on mathematical software</title><description>In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have been implemented in Fortran 77 using the reverse communication mechanism for the matrix-vector product, the preconditioning and the dot product computations. For distributed memory computation, several orthogonalization procedures have been implemented to reduce the cost of the dot product calculation, which is a well-known bottleneck of efficiency for the Krylov methods. Either implicit or explicit calculation of the residual at restart are possible depending on the actual cost of the matrix-vector product. Finally the implemented stopping criterion is based on a normwise backward error.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Distributed shared memory</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Software engineering</subject><subject>Studies</subject><issn>0098-3500</issn><issn>1557-7295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkM9LwzAcxYMoOKdnr0Hw2O2bpElab2PMKUwEf5xLliZbR9vUJAX9761bwdO7fN573-9D6JbAjJCUzwkImQs5O6qEMzQhnMtE0pyfowlAniWMA1yiqxAOAECJJBNkF_XO-SruG5ylFD_gBQ4mYmfx-uVt9Y6962PVmoCt89gbVWPVlli7pqvNN1ZHp4mVDti1eF_t9rgzfmAb1Wpz5PpofLhGF1bVwdyMOkWfj6uP5VOyeV0_LxebRFNOY0KsTa3YpsBBWJtBDoRoWrJMi7IkqaREiJQqLW3GrBI0k1pRyvItMyC2UrEpujvldt599SbE4uB63w6VBaUcpGCMDtD8BGnvQvDGFp2vGuV_CgLF35bFuGUxbjk47sdYFbSqrR--q8K_TeTpcCxnvxW-cdw</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>FRAYSSE, Valérie</creator><creator>GIRAUD, Luc</creator><creator>CERFACS, Serge Gratton</creator><creator>LANGOU, Julien</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20050601</creationdate><title>Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers</title><author>FRAYSSE, Valérie ; GIRAUD, Luc ; CERFACS, Serge Gratton ; LANGOU, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Distributed shared memory</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Software engineering</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FRAYSSE, Valérie</creatorcontrib><creatorcontrib>GIRAUD, Luc</creatorcontrib><creatorcontrib>CERFACS, Serge Gratton</creatorcontrib><creatorcontrib>LANGOU, Julien</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>ACM transactions on mathematical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FRAYSSE, Valérie</au><au>GIRAUD, Luc</au><au>CERFACS, Serge Gratton</au><au>LANGOU, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers</atitle><jtitle>ACM transactions on mathematical software</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>31</volume><issue>2</issue><spage>228</spage><epage>238</epage><pages>228-238</pages><issn>0098-3500</issn><eissn>1557-7295</eissn><coden>ACMSCU</coden><abstract>In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have been implemented in Fortran 77 using the reverse communication mechanism for the matrix-vector product, the preconditioning and the dot product computations. For distributed memory computation, several orthogonalization procedures have been implemented to reduce the cost of the dot product calculation, which is a well-known bottleneck of efficiency for the Krylov methods. Either implicit or explicit calculation of the residual at restart are possible depending on the actual cost of the matrix-vector product. Finally the implemented stopping criterion is based on a normwise backward error.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/1067967.1067970</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3500 |
ispartof | ACM transactions on mathematical software, 2005-06, Vol.31 (2), p.228-238 |
issn | 0098-3500 1557-7295 |
language | eng |
recordid | cdi_proquest_journals_225076332 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Algorithms Applied sciences Computer science control theory systems Distributed shared memory Exact sciences and technology Mathematics Matrix Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Sciences and techniques of general use Software Software engineering Studies |
title | Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm%20842%20:%20A%20set%20of%20GMRES%20routines%20for%20real%20and%20complex%20arithmetics%20on%20high%20performance%20computers&rft.jtitle=ACM%20transactions%20on%20mathematical%20software&rft.au=FRAYSSE,%20Val%C3%A9rie&rft.date=2005-06-01&rft.volume=31&rft.issue=2&rft.spage=228&rft.epage=238&rft.pages=228-238&rft.issn=0098-3500&rft.eissn=1557-7295&rft.coden=ACMSCU&rft_id=info:doi/10.1145/1067967.1067970&rft_dat=%3Cproquest_cross%3E863004471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=225076332&rft_id=info:pmid/&rfr_iscdi=true |