Loading…

Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers

In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have be...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on mathematical software 2005-06, Vol.31 (2), p.228-238
Main Authors: FRAYSSE, Valérie, GIRAUD, Luc, CERFACS, Serge Gratton, LANGOU, Julien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3
container_end_page 238
container_issue 2
container_start_page 228
container_title ACM transactions on mathematical software
container_volume 31
creator FRAYSSE, Valérie
GIRAUD, Luc
CERFACS, Serge Gratton
LANGOU, Julien
description In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have been implemented in Fortran 77 using the reverse communication mechanism for the matrix-vector product, the preconditioning and the dot product computations. For distributed memory computation, several orthogonalization procedures have been implemented to reduce the cost of the dot product calculation, which is a well-known bottleneck of efficiency for the Krylov methods. Either implicit or explicit calculation of the residual at restart are possible depending on the actual cost of the matrix-vector product. Finally the implemented stopping criterion is based on a normwise backward error.
doi_str_mv 10.1145/1067967.1067970
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_225076332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>863004471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3</originalsourceid><addsrcrecordid>eNpFkM9LwzAcxYMoOKdnr0Hw2O2bpElab2PMKUwEf5xLliZbR9vUJAX9761bwdO7fN573-9D6JbAjJCUzwkImQs5O6qEMzQhnMtE0pyfowlAniWMA1yiqxAOAECJJBNkF_XO-SruG5ylFD_gBQ4mYmfx-uVt9Y6962PVmoCt89gbVWPVlli7pqvNN1ZHp4mVDti1eF_t9rgzfmAb1Wpz5PpofLhGF1bVwdyMOkWfj6uP5VOyeV0_LxebRFNOY0KsTa3YpsBBWJtBDoRoWrJMi7IkqaREiJQqLW3GrBI0k1pRyvItMyC2UrEpujvldt599SbE4uB63w6VBaUcpGCMDtD8BGnvQvDGFp2vGuV_CgLF35bFuGUxbjk47sdYFbSqrR--q8K_TeTpcCxnvxW-cdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>225076332</pqid></control><display><type>article</type><title>Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>FRAYSSE, Valérie ; GIRAUD, Luc ; CERFACS, Serge Gratton ; LANGOU, Julien</creator><creatorcontrib>FRAYSSE, Valérie ; GIRAUD, Luc ; CERFACS, Serge Gratton ; LANGOU, Julien</creatorcontrib><description>In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have been implemented in Fortran 77 using the reverse communication mechanism for the matrix-vector product, the preconditioning and the dot product computations. For distributed memory computation, several orthogonalization procedures have been implemented to reduce the cost of the dot product calculation, which is a well-known bottleneck of efficiency for the Krylov methods. Either implicit or explicit calculation of the residual at restart are possible depending on the actual cost of the matrix-vector product. Finally the implemented stopping criterion is based on a normwise backward error.</description><identifier>ISSN: 0098-3500</identifier><identifier>EISSN: 1557-7295</identifier><identifier>DOI: 10.1145/1067967.1067970</identifier><identifier>CODEN: ACMSCU</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Distributed shared memory ; Exact sciences and technology ; Mathematics ; Matrix ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use ; Software ; Software engineering ; Studies</subject><ispartof>ACM transactions on mathematical software, 2005-06, Vol.31 (2), p.228-238</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Association for Computing Machinery Jun 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16948095$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FRAYSSE, Valérie</creatorcontrib><creatorcontrib>GIRAUD, Luc</creatorcontrib><creatorcontrib>CERFACS, Serge Gratton</creatorcontrib><creatorcontrib>LANGOU, Julien</creatorcontrib><title>Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers</title><title>ACM transactions on mathematical software</title><description>In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have been implemented in Fortran 77 using the reverse communication mechanism for the matrix-vector product, the preconditioning and the dot product computations. For distributed memory computation, several orthogonalization procedures have been implemented to reduce the cost of the dot product calculation, which is a well-known bottleneck of efficiency for the Krylov methods. Either implicit or explicit calculation of the residual at restart are possible depending on the actual cost of the matrix-vector product. Finally the implemented stopping criterion is based on a normwise backward error.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Distributed shared memory</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Software engineering</subject><subject>Studies</subject><issn>0098-3500</issn><issn>1557-7295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkM9LwzAcxYMoOKdnr0Hw2O2bpElab2PMKUwEf5xLliZbR9vUJAX9761bwdO7fN573-9D6JbAjJCUzwkImQs5O6qEMzQhnMtE0pyfowlAniWMA1yiqxAOAECJJBNkF_XO-SruG5ylFD_gBQ4mYmfx-uVt9Y6962PVmoCt89gbVWPVlli7pqvNN1ZHp4mVDti1eF_t9rgzfmAb1Wpz5PpofLhGF1bVwdyMOkWfj6uP5VOyeV0_LxebRFNOY0KsTa3YpsBBWJtBDoRoWrJMi7IkqaREiJQqLW3GrBI0k1pRyvItMyC2UrEpujvldt599SbE4uB63w6VBaUcpGCMDtD8BGnvQvDGFp2vGuV_CgLF35bFuGUxbjk47sdYFbSqrR--q8K_TeTpcCxnvxW-cdw</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>FRAYSSE, Valérie</creator><creator>GIRAUD, Luc</creator><creator>CERFACS, Serge Gratton</creator><creator>LANGOU, Julien</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20050601</creationdate><title>Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers</title><author>FRAYSSE, Valérie ; GIRAUD, Luc ; CERFACS, Serge Gratton ; LANGOU, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Distributed shared memory</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Software engineering</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FRAYSSE, Valérie</creatorcontrib><creatorcontrib>GIRAUD, Luc</creatorcontrib><creatorcontrib>CERFACS, Serge Gratton</creatorcontrib><creatorcontrib>LANGOU, Julien</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>ACM transactions on mathematical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FRAYSSE, Valérie</au><au>GIRAUD, Luc</au><au>CERFACS, Serge Gratton</au><au>LANGOU, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers</atitle><jtitle>ACM transactions on mathematical software</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>31</volume><issue>2</issue><spage>228</spage><epage>238</epage><pages>228-238</pages><issn>0098-3500</issn><eissn>1557-7295</eissn><coden>ACMSCU</coden><abstract>In this article we describe our implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency the GMRES solvers have been implemented in Fortran 77 using the reverse communication mechanism for the matrix-vector product, the preconditioning and the dot product computations. For distributed memory computation, several orthogonalization procedures have been implemented to reduce the cost of the dot product calculation, which is a well-known bottleneck of efficiency for the Krylov methods. Either implicit or explicit calculation of the residual at restart are possible depending on the actual cost of the matrix-vector product. Finally the implemented stopping criterion is based on a normwise backward error.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/1067967.1067970</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-3500
ispartof ACM transactions on mathematical software, 2005-06, Vol.31 (2), p.228-238
issn 0098-3500
1557-7295
language eng
recordid cdi_proquest_journals_225076332
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Algorithms
Applied sciences
Computer science
control theory
systems
Distributed shared memory
Exact sciences and technology
Mathematics
Matrix
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Sciences and techniques of general use
Software
Software engineering
Studies
title Algorithm 842 : A set of GMRES routines for real and complex arithmetics on high performance computers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm%20842%20:%20A%20set%20of%20GMRES%20routines%20for%20real%20and%20complex%20arithmetics%20on%20high%20performance%20computers&rft.jtitle=ACM%20transactions%20on%20mathematical%20software&rft.au=FRAYSSE,%20Val%C3%A9rie&rft.date=2005-06-01&rft.volume=31&rft.issue=2&rft.spage=228&rft.epage=238&rft.pages=228-238&rft.issn=0098-3500&rft.eissn=1557-7295&rft.coden=ACMSCU&rft_id=info:doi/10.1145/1067967.1067970&rft_dat=%3Cproquest_cross%3E863004471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-1ff4f6b40506ff809011c2d38c6dd147216642ac7f83fa6287ca2239b3e06b7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=225076332&rft_id=info:pmid/&rfr_iscdi=true