Loading…
A lattice Boltzmann method for simulating viscoelastic drops
We report some numerical simulations of multiphase viscoelastic fluids based on an algorithm that employs a diffusive-interface lattice Boltzmann method together with a lattice advection-diffusion scheme, the former used to model the macroscopic hydrodynamic equations for multiphase fluids and the l...
Saved in:
Published in: | Physics of fluids (1994) 2019-07, Vol.31 (7) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report some numerical simulations of multiphase viscoelastic fluids based on an algorithm that employs a diffusive-interface lattice Boltzmann method together with a lattice advection-diffusion scheme, the former used to model the macroscopic hydrodynamic equations for multiphase fluids and the latter to describe the polymer dynamics modeled by the Oldroyd-B constitutive model. The multiphase model is validated by a simulation of Newtonian drop deformation under steady shear. The viscoelastic model is validated by simulating a simple shear flow of an Oldroyd-B fluid. The coupled algorithm is used to simulate the viscoelastic drop deformation in shear flow. The numerical results are compared with the results from conventional methods, showing a good agreement. We study the viscosity (density) ratio effect on the bubble rising in viscoelastic liquids and demonstrate a nonmonotonic relation between the length of the bubble tail and the polymer relaxation time. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.5100327 |