Loading…
Optimal Dynamics of a Spherical Squirmer in Eulerian Description
The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of...
Saved in:
Published in: | JETP letters 2019-04, Vol.109 (8), p.512-515 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493 |
container_end_page | 515 |
container_issue | 8 |
container_start_page | 512 |
container_title | JETP letters |
container_volume | 109 |
creator | Ruban, V. P. |
description | The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of the surface velocity in the associated Legendre polynomials
P
n
1
(
c
o
s
θ
)
is obtained. The system is quadratically nonlinear, but it is integrable in the three-mode approximation. This allows a theoretical interpretation of numerical results previously obtained for this problem. |
doi_str_mv | 10.1134/S0021364019080101 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251731155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251731155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqJgXf0B3gKeqzN5NOlN2YcKC3uonks3ptqlr03aw_57Uyp4EE8D32tmPkJuEe4RuXjIABjyRACmoAEBz0iEkEKcCK3OSTTR8cRfkivvDwCImquIPO76oWqKmq5ObdFUxtOupAXN-i_rKhPw7DhWrrGOVi1dj3VAi5aurDeuCs6uvSYXZVF7e_MzF-R9s35bvsTb3fPr8mkbG5boIS5Ra5uqNLUguOVMMKO4Nlrv9wxlOMWAQSGYklKVjPPEyg-uSqGL8JYQKV-Quzm3d91xtH7ID93o2rAyZ0yi4ohSBhXOKuM6750t896F99wpR8inovI_RQUPmz0-aNtP636T_zd9A9LeZuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251731155</pqid></control><display><type>article</type><title>Optimal Dynamics of a Spherical Squirmer in Eulerian Description</title><source>Springer Link</source><creator>Ruban, V. P.</creator><creatorcontrib>Ruban, V. P.</creatorcontrib><description>The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of the surface velocity in the associated Legendre polynomials
P
n
1
(
c
o
s
θ
)
is obtained. The system is quadratically nonlinear, but it is integrable in the three-mode approximation. This allows a theoretical interpretation of numerical results previously obtained for this problem.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364019080101</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Deformation ; Hydro- and Gas Dynamics ; Molecular ; Optical and Plasma Physics ; Optimization ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Plasma ; Polynomials ; Quantum Information Technology ; Solid State Physics ; Spintronics ; Thermal expansion ; Viscous fluids</subject><ispartof>JETP letters, 2019-04, Vol.109 (8), p.512-515</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ruban, V. P.</creatorcontrib><title>Optimal Dynamics of a Spherical Squirmer in Eulerian Description</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of the surface velocity in the associated Legendre polynomials
P
n
1
(
c
o
s
θ
)
is obtained. The system is quadratically nonlinear, but it is integrable in the three-mode approximation. This allows a theoretical interpretation of numerical results previously obtained for this problem.</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Deformation</subject><subject>Hydro- and Gas Dynamics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Polynomials</subject><subject>Quantum Information Technology</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Thermal expansion</subject><subject>Viscous fluids</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqJgXf0B3gKeqzN5NOlN2YcKC3uonks3ptqlr03aw_57Uyp4EE8D32tmPkJuEe4RuXjIABjyRACmoAEBz0iEkEKcCK3OSTTR8cRfkivvDwCImquIPO76oWqKmq5ObdFUxtOupAXN-i_rKhPw7DhWrrGOVi1dj3VAi5aurDeuCs6uvSYXZVF7e_MzF-R9s35bvsTb3fPr8mkbG5boIS5Ra5uqNLUguOVMMKO4Nlrv9wxlOMWAQSGYklKVjPPEyg-uSqGL8JYQKV-Quzm3d91xtH7ID93o2rAyZ0yi4ohSBhXOKuM6750t896F99wpR8inovI_RQUPmz0-aNtP636T_zd9A9LeZuI</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ruban, V. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Optimal Dynamics of a Spherical Squirmer in Eulerian Description</title><author>Ruban, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Deformation</topic><topic>Hydro- and Gas Dynamics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Polynomials</topic><topic>Quantum Information Technology</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Thermal expansion</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruban, V. P.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruban, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Dynamics of a Spherical Squirmer in Eulerian Description</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>109</volume><issue>8</issue><spage>512</spage><epage>515</epage><pages>512-515</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of the surface velocity in the associated Legendre polynomials
P
n
1
(
c
o
s
θ
)
is obtained. The system is quadratically nonlinear, but it is integrable in the three-mode approximation. This allows a theoretical interpretation of numerical results previously obtained for this problem.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364019080101</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-3640 |
ispartof | JETP letters, 2019-04, Vol.109 (8), p.512-515 |
issn | 0021-3640 1090-6487 |
language | eng |
recordid | cdi_proquest_journals_2251731155 |
source | Springer Link |
subjects | Atomic Biological and Medical Physics Biophysics Deformation Hydro- and Gas Dynamics Molecular Optical and Plasma Physics Optimization Particle and Nuclear Physics Physics Physics and Astronomy Plasma Polynomials Quantum Information Technology Solid State Physics Spintronics Thermal expansion Viscous fluids |
title | Optimal Dynamics of a Spherical Squirmer in Eulerian Description |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Dynamics%20of%20a%20Spherical%20Squirmer%20in%20Eulerian%20Description&rft.jtitle=JETP%20letters&rft.au=Ruban,%20V.%20P.&rft.date=2019-04-01&rft.volume=109&rft.issue=8&rft.spage=512&rft.epage=515&rft.pages=512-515&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364019080101&rft_dat=%3Cproquest_cross%3E2251731155%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2251731155&rft_id=info:pmid/&rfr_iscdi=true |