Loading…

Optimal Dynamics of a Spherical Squirmer in Eulerian Description

The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of...

Full description

Saved in:
Bibliographic Details
Published in:JETP letters 2019-04, Vol.109 (8), p.512-515
Main Author: Ruban, V. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493
container_end_page 515
container_issue 8
container_start_page 512
container_title JETP letters
container_volume 109
creator Ruban, V. P.
description The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of the surface velocity in the associated Legendre polynomials P n 1 ( c o s θ ) is obtained. The system is quadratically nonlinear, but it is integrable in the three-mode approximation. This allows a theoretical interpretation of numerical results previously obtained for this problem.
doi_str_mv 10.1134/S0021364019080101
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251731155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251731155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqJgXf0B3gKeqzN5NOlN2YcKC3uonks3ptqlr03aw_57Uyp4EE8D32tmPkJuEe4RuXjIABjyRACmoAEBz0iEkEKcCK3OSTTR8cRfkivvDwCImquIPO76oWqKmq5ObdFUxtOupAXN-i_rKhPw7DhWrrGOVi1dj3VAi5aurDeuCs6uvSYXZVF7e_MzF-R9s35bvsTb3fPr8mkbG5boIS5Ra5uqNLUguOVMMKO4Nlrv9wxlOMWAQSGYklKVjPPEyg-uSqGL8JYQKV-Quzm3d91xtH7ID93o2rAyZ0yi4ohSBhXOKuM6750t896F99wpR8inovI_RQUPmz0-aNtP636T_zd9A9LeZuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251731155</pqid></control><display><type>article</type><title>Optimal Dynamics of a Spherical Squirmer in Eulerian Description</title><source>Springer Link</source><creator>Ruban, V. P.</creator><creatorcontrib>Ruban, V. P.</creatorcontrib><description>The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of the surface velocity in the associated Legendre polynomials P n 1 ( c o s θ ) is obtained. The system is quadratically nonlinear, but it is integrable in the three-mode approximation. This allows a theoretical interpretation of numerical results previously obtained for this problem.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364019080101</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Deformation ; Hydro- and Gas Dynamics ; Molecular ; Optical and Plasma Physics ; Optimization ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Plasma ; Polynomials ; Quantum Information Technology ; Solid State Physics ; Spintronics ; Thermal expansion ; Viscous fluids</subject><ispartof>JETP letters, 2019-04, Vol.109 (8), p.512-515</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ruban, V. P.</creatorcontrib><title>Optimal Dynamics of a Spherical Squirmer in Eulerian Description</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of the surface velocity in the associated Legendre polynomials P n 1 ( c o s θ ) is obtained. The system is quadratically nonlinear, but it is integrable in the three-mode approximation. This allows a theoretical interpretation of numerical results previously obtained for this problem.</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Deformation</subject><subject>Hydro- and Gas Dynamics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Polynomials</subject><subject>Quantum Information Technology</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Thermal expansion</subject><subject>Viscous fluids</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqJgXf0B3gKeqzN5NOlN2YcKC3uonks3ptqlr03aw_57Uyp4EE8D32tmPkJuEe4RuXjIABjyRACmoAEBz0iEkEKcCK3OSTTR8cRfkivvDwCImquIPO76oWqKmq5ObdFUxtOupAXN-i_rKhPw7DhWrrGOVi1dj3VAi5aurDeuCs6uvSYXZVF7e_MzF-R9s35bvsTb3fPr8mkbG5boIS5Ra5uqNLUguOVMMKO4Nlrv9wxlOMWAQSGYklKVjPPEyg-uSqGL8JYQKV-Quzm3d91xtH7ID93o2rAyZ0yi4ohSBhXOKuM6750t896F99wpR8inovI_RQUPmz0-aNtP636T_zd9A9LeZuI</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ruban, V. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Optimal Dynamics of a Spherical Squirmer in Eulerian Description</title><author>Ruban, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Deformation</topic><topic>Hydro- and Gas Dynamics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Polynomials</topic><topic>Quantum Information Technology</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Thermal expansion</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruban, V. P.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruban, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Dynamics of a Spherical Squirmer in Eulerian Description</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>109</volume><issue>8</issue><spage>512</spage><epage>515</epage><pages>512-515</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of the surface velocity in the associated Legendre polynomials P n 1 ( c o s θ ) is obtained. The system is quadratically nonlinear, but it is integrable in the three-mode approximation. This allows a theoretical interpretation of numerical results previously obtained for this problem.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364019080101</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2019-04, Vol.109 (8), p.512-515
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_2251731155
source Springer Link
subjects Atomic
Biological and Medical Physics
Biophysics
Deformation
Hydro- and Gas Dynamics
Molecular
Optical and Plasma Physics
Optimization
Particle and Nuclear Physics
Physics
Physics and Astronomy
Plasma
Polynomials
Quantum Information Technology
Solid State Physics
Spintronics
Thermal expansion
Viscous fluids
title Optimal Dynamics of a Spherical Squirmer in Eulerian Description
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Dynamics%20of%20a%20Spherical%20Squirmer%20in%20Eulerian%20Description&rft.jtitle=JETP%20letters&rft.au=Ruban,%20V.%20P.&rft.date=2019-04-01&rft.volume=109&rft.issue=8&rft.spage=512&rft.epage=515&rft.pages=512-515&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364019080101&rft_dat=%3Cproquest_cross%3E2251731155%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-f188e9799e043e3242c738c88bb215837c0c14427557f2336e5d37f48a2134493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2251731155&rft_id=info:pmid/&rfr_iscdi=true