Loading…
Thick adherent diamond films on AlN with low thermal barrier resistance
Growth of \(>\)100 \(\mu\)m thick diamond layer adherent on aluminium nitride is presented in this work. While thick films failed to adhere on untreated AlN films, hydrogen/nitrogen plasma treated AlN films retained the thick diamond layers. Clear differences in zeta potential measurement confirm...
Saved in:
Published in: | arXiv.org 2019-07 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Growth of \(>\)100 \(\mu\)m thick diamond layer adherent on aluminium nitride is presented in this work. While thick films failed to adhere on untreated AlN films, hydrogen/nitrogen plasma treated AlN films retained the thick diamond layers. Clear differences in zeta potential measurement confirms the surface modification due to hydrogen/nitrogen plasma treatment. Areal Raman maps showed an increase in non-diamond carbon in the initial layers of diamond grown on pre-treated AlN. The presence of non-diamond carbon has minimal effect on the interface between diamond and AlN. The surfaces studied with x-ray photoelectron spectroscopy (XPS) revealed a clear distinction between pre-treated and untreated samples. The surface aluminium goes from nitrogen rich environment to an oxygen rich environment after pre-treatment. Cross section transmission electron microscopy shows a clean interface between diamond and AlN. Thermal barrier resistance between diamond and AlN was found to be in the range of 16 m\(^2\)K/GW which is a large improvement on the current state-of-the-art. |
---|---|
ISSN: | 2331-8422 |