Loading…
Target volatility option pricing in the lognormal fractional SABR model
We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decompo...
Saved in:
Published in: | Quantitative finance 2019-08, Vol.19 (8), p.1339-1356 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283 |
container_end_page | 1356 |
container_issue | 8 |
container_start_page | 1339 |
container_title | Quantitative finance |
container_volume | 19 |
creator | Alòs, Elisa Chatterjee, Rupak Tudor, Sebastian F. Wang, Tai-Ho |
description | We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters. |
doi_str_mv | 10.1080/14697688.2019.1574021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2252766840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252766840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283</originalsourceid><addsrcrecordid>eNp9UM1KAzEYDKJgrT6CEPC8Ncnm92YtWoWCoPUc0jSpKdtNTVKlb-8urR49fcMwM3wzAFxjNMJIoltMuRJcyhFBWI0wExQRfAIGPV8JrvjpH5byHFzkvEYIM4TUAEznJq1cgV-xMSU0oexh3JYQW7hNwYZ2BUMLy4eDTVy1MW1MA30ytld08G18_wo3cemaS3DmTZPd1fEOwfvjw3zyVM1eps-T8ayyVLBSeU-MogR55x1W1i4WlAmHjTDIcoaZsrXDFBsmFUXCS14bJzqOUimEJ7IegptD7jbFz53LRa_jLnW_ZE0II4JzSVGnYgeVTTHn5Lzu2mxM2muMdL-Z_t1M95vp42ad7-7gC63vy37H1Cx1Mfsmpq52a0PW9f8RP3YRcrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252766840</pqid></control><display><type>article</type><title>Target volatility option pricing in the lognormal fractional SABR model</title><source>EBSCOhost Econlit with Full Text</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list)</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Alòs, Elisa ; Chatterjee, Rupak ; Tudor, Sebastian F. ; Wang, Tai-Ho</creator><creatorcontrib>Alòs, Elisa ; Chatterjee, Rupak ; Tudor, Sebastian F. ; Wang, Tai-Ho</creatorcontrib><description>We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2019.1574021</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Decomposition formula ; Lognormal fractional SABR model ; Small volatility of volatility approximation ; Target volatility option ; Volatility</subject><ispartof>Quantitative finance, 2019-08, Vol.19 (8), p.1339-1356</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283</citedby><cites>FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alòs, Elisa</creatorcontrib><creatorcontrib>Chatterjee, Rupak</creatorcontrib><creatorcontrib>Tudor, Sebastian F.</creatorcontrib><creatorcontrib>Wang, Tai-Ho</creatorcontrib><title>Target volatility option pricing in the lognormal fractional SABR model</title><title>Quantitative finance</title><description>We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.</description><subject>Decomposition formula</subject><subject>Lognormal fractional SABR model</subject><subject>Small volatility of volatility approximation</subject><subject>Target volatility option</subject><subject>Volatility</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UM1KAzEYDKJgrT6CEPC8Ncnm92YtWoWCoPUc0jSpKdtNTVKlb-8urR49fcMwM3wzAFxjNMJIoltMuRJcyhFBWI0wExQRfAIGPV8JrvjpH5byHFzkvEYIM4TUAEznJq1cgV-xMSU0oexh3JYQW7hNwYZ2BUMLy4eDTVy1MW1MA30ytld08G18_wo3cemaS3DmTZPd1fEOwfvjw3zyVM1eps-T8ayyVLBSeU-MogR55x1W1i4WlAmHjTDIcoaZsrXDFBsmFUXCS14bJzqOUimEJ7IegptD7jbFz53LRa_jLnW_ZE0II4JzSVGnYgeVTTHn5Lzu2mxM2muMdL-Z_t1M95vp42ad7-7gC63vy37H1Cx1Mfsmpq52a0PW9f8RP3YRcrI</recordid><startdate>20190803</startdate><enddate>20190803</enddate><creator>Alòs, Elisa</creator><creator>Chatterjee, Rupak</creator><creator>Tudor, Sebastian F.</creator><creator>Wang, Tai-Ho</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190803</creationdate><title>Target volatility option pricing in the lognormal fractional SABR model</title><author>Alòs, Elisa ; Chatterjee, Rupak ; Tudor, Sebastian F. ; Wang, Tai-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decomposition formula</topic><topic>Lognormal fractional SABR model</topic><topic>Small volatility of volatility approximation</topic><topic>Target volatility option</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alòs, Elisa</creatorcontrib><creatorcontrib>Chatterjee, Rupak</creatorcontrib><creatorcontrib>Tudor, Sebastian F.</creatorcontrib><creatorcontrib>Wang, Tai-Ho</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alòs, Elisa</au><au>Chatterjee, Rupak</au><au>Tudor, Sebastian F.</au><au>Wang, Tai-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Target volatility option pricing in the lognormal fractional SABR model</atitle><jtitle>Quantitative finance</jtitle><date>2019-08-03</date><risdate>2019</risdate><volume>19</volume><issue>8</issue><spage>1339</spage><epage>1356</epage><pages>1339-1356</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2019.1574021</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-7688 |
ispartof | Quantitative finance, 2019-08, Vol.19 (8), p.1339-1356 |
issn | 1469-7688 1469-7696 |
language | eng |
recordid | cdi_proquest_journals_2252766840 |
source | EBSCOhost Econlit with Full Text; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list); Business Source Ultimate (EBSCOHost) |
subjects | Decomposition formula Lognormal fractional SABR model Small volatility of volatility approximation Target volatility option Volatility |
title | Target volatility option pricing in the lognormal fractional SABR model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Target%20volatility%20option%20pricing%20in%20the%20lognormal%20fractional%20SABR%20model&rft.jtitle=Quantitative%20finance&rft.au=Al%C3%B2s,%20Elisa&rft.date=2019-08-03&rft.volume=19&rft.issue=8&rft.spage=1339&rft.epage=1356&rft.pages=1339-1356&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2019.1574021&rft_dat=%3Cproquest_cross%3E2252766840%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2252766840&rft_id=info:pmid/&rfr_iscdi=true |