Loading…

Target volatility option pricing in the lognormal fractional SABR model

We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decompo...

Full description

Saved in:
Bibliographic Details
Published in:Quantitative finance 2019-08, Vol.19 (8), p.1339-1356
Main Authors: Alòs, Elisa, Chatterjee, Rupak, Tudor, Sebastian F., Wang, Tai-Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283
cites cdi_FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283
container_end_page 1356
container_issue 8
container_start_page 1339
container_title Quantitative finance
container_volume 19
creator Alòs, Elisa
Chatterjee, Rupak
Tudor, Sebastian F.
Wang, Tai-Ho
description We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.
doi_str_mv 10.1080/14697688.2019.1574021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2252766840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252766840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283</originalsourceid><addsrcrecordid>eNp9UM1KAzEYDKJgrT6CEPC8Ncnm92YtWoWCoPUc0jSpKdtNTVKlb-8urR49fcMwM3wzAFxjNMJIoltMuRJcyhFBWI0wExQRfAIGPV8JrvjpH5byHFzkvEYIM4TUAEznJq1cgV-xMSU0oexh3JYQW7hNwYZ2BUMLy4eDTVy1MW1MA30ytld08G18_wo3cemaS3DmTZPd1fEOwfvjw3zyVM1eps-T8ayyVLBSeU-MogR55x1W1i4WlAmHjTDIcoaZsrXDFBsmFUXCS14bJzqOUimEJ7IegptD7jbFz53LRa_jLnW_ZE0II4JzSVGnYgeVTTHn5Lzu2mxM2muMdL-Z_t1M95vp42ad7-7gC63vy37H1Cx1Mfsmpq52a0PW9f8RP3YRcrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252766840</pqid></control><display><type>article</type><title>Target volatility option pricing in the lognormal fractional SABR model</title><source>EBSCOhost Econlit with Full Text</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list)</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Alòs, Elisa ; Chatterjee, Rupak ; Tudor, Sebastian F. ; Wang, Tai-Ho</creator><creatorcontrib>Alòs, Elisa ; Chatterjee, Rupak ; Tudor, Sebastian F. ; Wang, Tai-Ho</creatorcontrib><description>We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2019.1574021</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Decomposition formula ; Lognormal fractional SABR model ; Small volatility of volatility approximation ; Target volatility option ; Volatility</subject><ispartof>Quantitative finance, 2019-08, Vol.19 (8), p.1339-1356</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283</citedby><cites>FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alòs, Elisa</creatorcontrib><creatorcontrib>Chatterjee, Rupak</creatorcontrib><creatorcontrib>Tudor, Sebastian F.</creatorcontrib><creatorcontrib>Wang, Tai-Ho</creatorcontrib><title>Target volatility option pricing in the lognormal fractional SABR model</title><title>Quantitative finance</title><description>We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.</description><subject>Decomposition formula</subject><subject>Lognormal fractional SABR model</subject><subject>Small volatility of volatility approximation</subject><subject>Target volatility option</subject><subject>Volatility</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UM1KAzEYDKJgrT6CEPC8Ncnm92YtWoWCoPUc0jSpKdtNTVKlb-8urR49fcMwM3wzAFxjNMJIoltMuRJcyhFBWI0wExQRfAIGPV8JrvjpH5byHFzkvEYIM4TUAEznJq1cgV-xMSU0oexh3JYQW7hNwYZ2BUMLy4eDTVy1MW1MA30ytld08G18_wo3cemaS3DmTZPd1fEOwfvjw3zyVM1eps-T8ayyVLBSeU-MogR55x1W1i4WlAmHjTDIcoaZsrXDFBsmFUXCS14bJzqOUimEJ7IegptD7jbFz53LRa_jLnW_ZE0II4JzSVGnYgeVTTHn5Lzu2mxM2muMdL-Z_t1M95vp42ad7-7gC63vy37H1Cx1Mfsmpq52a0PW9f8RP3YRcrI</recordid><startdate>20190803</startdate><enddate>20190803</enddate><creator>Alòs, Elisa</creator><creator>Chatterjee, Rupak</creator><creator>Tudor, Sebastian F.</creator><creator>Wang, Tai-Ho</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190803</creationdate><title>Target volatility option pricing in the lognormal fractional SABR model</title><author>Alòs, Elisa ; Chatterjee, Rupak ; Tudor, Sebastian F. ; Wang, Tai-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decomposition formula</topic><topic>Lognormal fractional SABR model</topic><topic>Small volatility of volatility approximation</topic><topic>Target volatility option</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alòs, Elisa</creatorcontrib><creatorcontrib>Chatterjee, Rupak</creatorcontrib><creatorcontrib>Tudor, Sebastian F.</creatorcontrib><creatorcontrib>Wang, Tai-Ho</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alòs, Elisa</au><au>Chatterjee, Rupak</au><au>Tudor, Sebastian F.</au><au>Wang, Tai-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Target volatility option pricing in the lognormal fractional SABR model</atitle><jtitle>Quantitative finance</jtitle><date>2019-08-03</date><risdate>2019</risdate><volume>19</volume><issue>8</issue><spage>1339</spage><epage>1356</epage><pages>1339-1356</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2019.1574021</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2019-08, Vol.19 (8), p.1339-1356
issn 1469-7688
1469-7696
language eng
recordid cdi_proquest_journals_2252766840
source EBSCOhost Econlit with Full Text; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list); Business Source Ultimate (EBSCOHost)
subjects Decomposition formula
Lognormal fractional SABR model
Small volatility of volatility approximation
Target volatility option
Volatility
title Target volatility option pricing in the lognormal fractional SABR model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Target%20volatility%20option%20pricing%20in%20the%20lognormal%20fractional%20SABR%20model&rft.jtitle=Quantitative%20finance&rft.au=Al%C3%B2s,%20Elisa&rft.date=2019-08-03&rft.volume=19&rft.issue=8&rft.spage=1339&rft.epage=1356&rft.pages=1339-1356&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2019.1574021&rft_dat=%3Cproquest_cross%3E2252766840%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-ff2a9420fefe19ccbb457e1a7a0c65159c3e141a589407f863ae7c3e44877f283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2252766840&rft_id=info:pmid/&rfr_iscdi=true