Loading…

A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts

•A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer f...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2019-08, Vol.138, p.809-824
Main Authors: Hu, Yang, Li, Decai, Niu, Xiaodong, Shu, Shi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963
cites cdi_FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963
container_end_page 824
container_issue
container_start_page 809
container_title International journal of heat and mass transfer
container_volume 138
creator Hu, Yang
Li, Decai
Niu, Xiaodong
Shu, Shi
description •A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer fluids is derived. A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts is developed in this paper. In this model, three distribution functions are used to describe the evolution of phase field, velocity field and temperature field. The conservative Allen-Cahn-based lattce Boltzmann equation which has good numerical stability in simulating multiphase flows at high density ratio is employed to capture the phase interface. The velocity-based lattice Boltzmann equation is utilized to capture the hydrodynamics with thermocapillary effect. In particular, a lattice Boltzmann scheme is proposed to solve the temperature field equation based on the diffuse interface concept, in which the source term is computed locally. Unlike previous lattice Boltzmann model for thermocapillary flows, the thermophysical parameters (heat capacitance and thermal conductivity) of two fluids are allowed to be different. The present model is validated by simulating several numerical examples. Numerical results indicate the reliability of proposed diffuse interface lattice Boltzmann model in simulating thermocapillary flows with large density ratio (up to 1000) and thermophysical parameters contrasts. Moreover, we also derive an unsteady solution for thermocapillary-driven flow in a heated microchannel with two superimposed planar fluids, which can be used to assess the numerical accuracy of numerical algorithm for thermocapillary flows.
doi_str_mv 10.1016/j.ijheatmasstransfer.2019.04.104
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253257252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931018357740</els_id><sourcerecordid>2253257252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963</originalsourceid><addsrcrecordid>eNqNULmOFDEQtRBIDAv_YImEpAfb7b4ylhXLoZVIILZq7TLjVrfduDyshg_gu_FoNiMhKpXqHfUeY2-k2Esh-7fzPswHhLICUckQyWPeKyGnvdAVoZ-wnRyHqVFynJ6ynRByaKZWiufsBdF8XoXud-zPNXfB-yMhD7Fg9mCRL1BKqPN9WsrvFWLka3K4cJ8yLwfMa7KwhWWBfOJ-SQ_EH0I5VFr-gdxhpFBOPEMJiUN0j5TtcKJgYeEbZFixehG3KdbfqdBL9szDQvjqcV6x77cfvt18au6-fvx8c33XWC2G0sj-vkMnNQqJHvq2Q2lhdNrh0FvpuxHE_TDpUWulnW07r1qPEvzghPDt1LdX7PVFd8vp5xGpmDkdc6yWRqmuVd2gOlVR7y4omxNRRm-2HNaa1khhzu2b2fzbvjm3b4SuCF0lvlwksKb5FeqVbMBo0YWMthiXwv-L_QVrDJ7p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253257252</pqid></control><display><type>article</type><title>A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hu, Yang ; Li, Decai ; Niu, Xiaodong ; Shu, Shi</creator><creatorcontrib>Hu, Yang ; Li, Decai ; Niu, Xiaodong ; Shu, Shi</creatorcontrib><description>•A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer fluids is derived. A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts is developed in this paper. In this model, three distribution functions are used to describe the evolution of phase field, velocity field and temperature field. The conservative Allen-Cahn-based lattce Boltzmann equation which has good numerical stability in simulating multiphase flows at high density ratio is employed to capture the phase interface. The velocity-based lattice Boltzmann equation is utilized to capture the hydrodynamics with thermocapillary effect. In particular, a lattice Boltzmann scheme is proposed to solve the temperature field equation based on the diffuse interface concept, in which the source term is computed locally. Unlike previous lattice Boltzmann model for thermocapillary flows, the thermophysical parameters (heat capacitance and thermal conductivity) of two fluids are allowed to be different. The present model is validated by simulating several numerical examples. Numerical results indicate the reliability of proposed diffuse interface lattice Boltzmann model in simulating thermocapillary flows with large density ratio (up to 1000) and thermophysical parameters contrasts. Moreover, we also derive an unsteady solution for thermocapillary-driven flow in a heated microchannel with two superimposed planar fluids, which can be used to assess the numerical accuracy of numerical algorithm for thermocapillary flows.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.04.104</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Boltzmann transport equation ; Computational fluid dynamics ; Computer simulation ; Density ratio ; Diffuse interface method ; Distribution functions ; Fluid flow ; Hydrodynamics ; Large density ratio ; Lattice Boltzmann method ; Mathematical models ; Microchannels ; Numerical analysis ; Numerical stability ; Parameters ; Temperature distribution ; Thermal conductivity ; Thermocapillary flows ; Thermophysical models ; Thermophysical parameters contrasts ; Velocity distribution</subject><ispartof>International journal of heat and mass transfer, 2019-08, Vol.138, p.809-824</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963</citedby><cites>FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Li, Decai</creatorcontrib><creatorcontrib>Niu, Xiaodong</creatorcontrib><creatorcontrib>Shu, Shi</creatorcontrib><title>A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts</title><title>International journal of heat and mass transfer</title><description>•A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer fluids is derived. A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts is developed in this paper. In this model, three distribution functions are used to describe the evolution of phase field, velocity field and temperature field. The conservative Allen-Cahn-based lattce Boltzmann equation which has good numerical stability in simulating multiphase flows at high density ratio is employed to capture the phase interface. The velocity-based lattice Boltzmann equation is utilized to capture the hydrodynamics with thermocapillary effect. In particular, a lattice Boltzmann scheme is proposed to solve the temperature field equation based on the diffuse interface concept, in which the source term is computed locally. Unlike previous lattice Boltzmann model for thermocapillary flows, the thermophysical parameters (heat capacitance and thermal conductivity) of two fluids are allowed to be different. The present model is validated by simulating several numerical examples. Numerical results indicate the reliability of proposed diffuse interface lattice Boltzmann model in simulating thermocapillary flows with large density ratio (up to 1000) and thermophysical parameters contrasts. Moreover, we also derive an unsteady solution for thermocapillary-driven flow in a heated microchannel with two superimposed planar fluids, which can be used to assess the numerical accuracy of numerical algorithm for thermocapillary flows.</description><subject>Algorithms</subject><subject>Boltzmann transport equation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Density ratio</subject><subject>Diffuse interface method</subject><subject>Distribution functions</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Large density ratio</subject><subject>Lattice Boltzmann method</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Numerical analysis</subject><subject>Numerical stability</subject><subject>Parameters</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><subject>Thermocapillary flows</subject><subject>Thermophysical models</subject><subject>Thermophysical parameters contrasts</subject><subject>Velocity distribution</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNULmOFDEQtRBIDAv_YImEpAfb7b4ylhXLoZVIILZq7TLjVrfduDyshg_gu_FoNiMhKpXqHfUeY2-k2Esh-7fzPswHhLICUckQyWPeKyGnvdAVoZ-wnRyHqVFynJ6ynRByaKZWiufsBdF8XoXud-zPNXfB-yMhD7Fg9mCRL1BKqPN9WsrvFWLka3K4cJ8yLwfMa7KwhWWBfOJ-SQ_EH0I5VFr-gdxhpFBOPEMJiUN0j5TtcKJgYeEbZFixehG3KdbfqdBL9szDQvjqcV6x77cfvt18au6-fvx8c33XWC2G0sj-vkMnNQqJHvq2Q2lhdNrh0FvpuxHE_TDpUWulnW07r1qPEvzghPDt1LdX7PVFd8vp5xGpmDkdc6yWRqmuVd2gOlVR7y4omxNRRm-2HNaa1khhzu2b2fzbvjm3b4SuCF0lvlwksKb5FeqVbMBo0YWMthiXwv-L_QVrDJ7p</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Hu, Yang</creator><creator>Li, Decai</creator><creator>Niu, Xiaodong</creator><creator>Shu, Shi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20190801</creationdate><title>A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts</title><author>Hu, Yang ; Li, Decai ; Niu, Xiaodong ; Shu, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Boltzmann transport equation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Density ratio</topic><topic>Diffuse interface method</topic><topic>Distribution functions</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Large density ratio</topic><topic>Lattice Boltzmann method</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Numerical analysis</topic><topic>Numerical stability</topic><topic>Parameters</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><topic>Thermocapillary flows</topic><topic>Thermophysical models</topic><topic>Thermophysical parameters contrasts</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Li, Decai</creatorcontrib><creatorcontrib>Niu, Xiaodong</creatorcontrib><creatorcontrib>Shu, Shi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yang</au><au>Li, Decai</au><au>Niu, Xiaodong</au><au>Shu, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>138</volume><spage>809</spage><epage>824</epage><pages>809-824</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer fluids is derived. A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts is developed in this paper. In this model, three distribution functions are used to describe the evolution of phase field, velocity field and temperature field. The conservative Allen-Cahn-based lattce Boltzmann equation which has good numerical stability in simulating multiphase flows at high density ratio is employed to capture the phase interface. The velocity-based lattice Boltzmann equation is utilized to capture the hydrodynamics with thermocapillary effect. In particular, a lattice Boltzmann scheme is proposed to solve the temperature field equation based on the diffuse interface concept, in which the source term is computed locally. Unlike previous lattice Boltzmann model for thermocapillary flows, the thermophysical parameters (heat capacitance and thermal conductivity) of two fluids are allowed to be different. The present model is validated by simulating several numerical examples. Numerical results indicate the reliability of proposed diffuse interface lattice Boltzmann model in simulating thermocapillary flows with large density ratio (up to 1000) and thermophysical parameters contrasts. Moreover, we also derive an unsteady solution for thermocapillary-driven flow in a heated microchannel with two superimposed planar fluids, which can be used to assess the numerical accuracy of numerical algorithm for thermocapillary flows.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.04.104</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2019-08, Vol.138, p.809-824
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2253257252
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithms
Boltzmann transport equation
Computational fluid dynamics
Computer simulation
Density ratio
Diffuse interface method
Distribution functions
Fluid flow
Hydrodynamics
Large density ratio
Lattice Boltzmann method
Mathematical models
Microchannels
Numerical analysis
Numerical stability
Parameters
Temperature distribution
Thermal conductivity
Thermocapillary flows
Thermophysical models
Thermophysical parameters contrasts
Velocity distribution
title A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20diffuse%20interface%20lattice%20Boltzmann%20model%20for%20thermocapillary%20flows%20with%20large%20density%20ratio%20and%20thermophysical%20parameters%20contrasts&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Hu,%20Yang&rft.date=2019-08-01&rft.volume=138&rft.spage=809&rft.epage=824&rft.pages=809-824&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.04.104&rft_dat=%3Cproquest_cross%3E2253257252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253257252&rft_id=info:pmid/&rfr_iscdi=true