Loading…
A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts
•A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer f...
Saved in:
Published in: | International journal of heat and mass transfer 2019-08, Vol.138, p.809-824 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963 |
container_end_page | 824 |
container_issue | |
container_start_page | 809 |
container_title | International journal of heat and mass transfer |
container_volume | 138 |
creator | Hu, Yang Li, Decai Niu, Xiaodong Shu, Shi |
description | •A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer fluids is derived.
A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts is developed in this paper. In this model, three distribution functions are used to describe the evolution of phase field, velocity field and temperature field. The conservative Allen-Cahn-based lattce Boltzmann equation which has good numerical stability in simulating multiphase flows at high density ratio is employed to capture the phase interface. The velocity-based lattice Boltzmann equation is utilized to capture the hydrodynamics with thermocapillary effect. In particular, a lattice Boltzmann scheme is proposed to solve the temperature field equation based on the diffuse interface concept, in which the source term is computed locally. Unlike previous lattice Boltzmann model for thermocapillary flows, the thermophysical parameters (heat capacitance and thermal conductivity) of two fluids are allowed to be different. The present model is validated by simulating several numerical examples. Numerical results indicate the reliability of proposed diffuse interface lattice Boltzmann model in simulating thermocapillary flows with large density ratio (up to 1000) and thermophysical parameters contrasts. Moreover, we also derive an unsteady solution for thermocapillary-driven flow in a heated microchannel with two superimposed planar fluids, which can be used to assess the numerical accuracy of numerical algorithm for thermocapillary flows. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2019.04.104 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253257252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931018357740</els_id><sourcerecordid>2253257252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963</originalsourceid><addsrcrecordid>eNqNULmOFDEQtRBIDAv_YImEpAfb7b4ylhXLoZVIILZq7TLjVrfduDyshg_gu_FoNiMhKpXqHfUeY2-k2Esh-7fzPswHhLICUckQyWPeKyGnvdAVoZ-wnRyHqVFynJ6ynRByaKZWiufsBdF8XoXud-zPNXfB-yMhD7Fg9mCRL1BKqPN9WsrvFWLka3K4cJ8yLwfMa7KwhWWBfOJ-SQ_EH0I5VFr-gdxhpFBOPEMJiUN0j5TtcKJgYeEbZFixehG3KdbfqdBL9szDQvjqcV6x77cfvt18au6-fvx8c33XWC2G0sj-vkMnNQqJHvq2Q2lhdNrh0FvpuxHE_TDpUWulnW07r1qPEvzghPDt1LdX7PVFd8vp5xGpmDkdc6yWRqmuVd2gOlVR7y4omxNRRm-2HNaa1khhzu2b2fzbvjm3b4SuCF0lvlwksKb5FeqVbMBo0YWMthiXwv-L_QVrDJ7p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253257252</pqid></control><display><type>article</type><title>A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hu, Yang ; Li, Decai ; Niu, Xiaodong ; Shu, Shi</creator><creatorcontrib>Hu, Yang ; Li, Decai ; Niu, Xiaodong ; Shu, Shi</creatorcontrib><description>•A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer fluids is derived.
A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts is developed in this paper. In this model, three distribution functions are used to describe the evolution of phase field, velocity field and temperature field. The conservative Allen-Cahn-based lattce Boltzmann equation which has good numerical stability in simulating multiphase flows at high density ratio is employed to capture the phase interface. The velocity-based lattice Boltzmann equation is utilized to capture the hydrodynamics with thermocapillary effect. In particular, a lattice Boltzmann scheme is proposed to solve the temperature field equation based on the diffuse interface concept, in which the source term is computed locally. Unlike previous lattice Boltzmann model for thermocapillary flows, the thermophysical parameters (heat capacitance and thermal conductivity) of two fluids are allowed to be different. The present model is validated by simulating several numerical examples. Numerical results indicate the reliability of proposed diffuse interface lattice Boltzmann model in simulating thermocapillary flows with large density ratio (up to 1000) and thermophysical parameters contrasts. Moreover, we also derive an unsteady solution for thermocapillary-driven flow in a heated microchannel with two superimposed planar fluids, which can be used to assess the numerical accuracy of numerical algorithm for thermocapillary flows.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.04.104</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Boltzmann transport equation ; Computational fluid dynamics ; Computer simulation ; Density ratio ; Diffuse interface method ; Distribution functions ; Fluid flow ; Hydrodynamics ; Large density ratio ; Lattice Boltzmann method ; Mathematical models ; Microchannels ; Numerical analysis ; Numerical stability ; Parameters ; Temperature distribution ; Thermal conductivity ; Thermocapillary flows ; Thermophysical models ; Thermophysical parameters contrasts ; Velocity distribution</subject><ispartof>International journal of heat and mass transfer, 2019-08, Vol.138, p.809-824</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963</citedby><cites>FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Li, Decai</creatorcontrib><creatorcontrib>Niu, Xiaodong</creatorcontrib><creatorcontrib>Shu, Shi</creatorcontrib><title>A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts</title><title>International journal of heat and mass transfer</title><description>•A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer fluids is derived.
A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts is developed in this paper. In this model, three distribution functions are used to describe the evolution of phase field, velocity field and temperature field. The conservative Allen-Cahn-based lattce Boltzmann equation which has good numerical stability in simulating multiphase flows at high density ratio is employed to capture the phase interface. The velocity-based lattice Boltzmann equation is utilized to capture the hydrodynamics with thermocapillary effect. In particular, a lattice Boltzmann scheme is proposed to solve the temperature field equation based on the diffuse interface concept, in which the source term is computed locally. Unlike previous lattice Boltzmann model for thermocapillary flows, the thermophysical parameters (heat capacitance and thermal conductivity) of two fluids are allowed to be different. The present model is validated by simulating several numerical examples. Numerical results indicate the reliability of proposed diffuse interface lattice Boltzmann model in simulating thermocapillary flows with large density ratio (up to 1000) and thermophysical parameters contrasts. Moreover, we also derive an unsteady solution for thermocapillary-driven flow in a heated microchannel with two superimposed planar fluids, which can be used to assess the numerical accuracy of numerical algorithm for thermocapillary flows.</description><subject>Algorithms</subject><subject>Boltzmann transport equation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Density ratio</subject><subject>Diffuse interface method</subject><subject>Distribution functions</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Large density ratio</subject><subject>Lattice Boltzmann method</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Numerical analysis</subject><subject>Numerical stability</subject><subject>Parameters</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><subject>Thermocapillary flows</subject><subject>Thermophysical models</subject><subject>Thermophysical parameters contrasts</subject><subject>Velocity distribution</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNULmOFDEQtRBIDAv_YImEpAfb7b4ylhXLoZVIILZq7TLjVrfduDyshg_gu_FoNiMhKpXqHfUeY2-k2Esh-7fzPswHhLICUckQyWPeKyGnvdAVoZ-wnRyHqVFynJ6ynRByaKZWiufsBdF8XoXud-zPNXfB-yMhD7Fg9mCRL1BKqPN9WsrvFWLka3K4cJ8yLwfMa7KwhWWBfOJ-SQ_EH0I5VFr-gdxhpFBOPEMJiUN0j5TtcKJgYeEbZFixehG3KdbfqdBL9szDQvjqcV6x77cfvt18au6-fvx8c33XWC2G0sj-vkMnNQqJHvq2Q2lhdNrh0FvpuxHE_TDpUWulnW07r1qPEvzghPDt1LdX7PVFd8vp5xGpmDkdc6yWRqmuVd2gOlVR7y4omxNRRm-2HNaa1khhzu2b2fzbvjm3b4SuCF0lvlwksKb5FeqVbMBo0YWMthiXwv-L_QVrDJ7p</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Hu, Yang</creator><creator>Li, Decai</creator><creator>Niu, Xiaodong</creator><creator>Shu, Shi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20190801</creationdate><title>A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts</title><author>Hu, Yang ; Li, Decai ; Niu, Xiaodong ; Shu, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Boltzmann transport equation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Density ratio</topic><topic>Diffuse interface method</topic><topic>Distribution functions</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Large density ratio</topic><topic>Lattice Boltzmann method</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Numerical analysis</topic><topic>Numerical stability</topic><topic>Parameters</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><topic>Thermocapillary flows</topic><topic>Thermophysical models</topic><topic>Thermophysical parameters contrasts</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Li, Decai</creatorcontrib><creatorcontrib>Niu, Xiaodong</creatorcontrib><creatorcontrib>Shu, Shi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yang</au><au>Li, Decai</au><au>Niu, Xiaodong</au><au>Shu, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>138</volume><spage>809</spage><epage>824</epage><pages>809-824</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A diffuse interface lattice Boltzmann model for thermocapillary flows is proposed.•This model can simulate the thermocapillary flows with density ratio up to 1000.•Thermophysical parameters of two fluids are allowed to be different.•An unsteady solution for thermocapillary convection in two layer fluids is derived.
A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts is developed in this paper. In this model, three distribution functions are used to describe the evolution of phase field, velocity field and temperature field. The conservative Allen-Cahn-based lattce Boltzmann equation which has good numerical stability in simulating multiphase flows at high density ratio is employed to capture the phase interface. The velocity-based lattice Boltzmann equation is utilized to capture the hydrodynamics with thermocapillary effect. In particular, a lattice Boltzmann scheme is proposed to solve the temperature field equation based on the diffuse interface concept, in which the source term is computed locally. Unlike previous lattice Boltzmann model for thermocapillary flows, the thermophysical parameters (heat capacitance and thermal conductivity) of two fluids are allowed to be different. The present model is validated by simulating several numerical examples. Numerical results indicate the reliability of proposed diffuse interface lattice Boltzmann model in simulating thermocapillary flows with large density ratio (up to 1000) and thermophysical parameters contrasts. Moreover, we also derive an unsteady solution for thermocapillary-driven flow in a heated microchannel with two superimposed planar fluids, which can be used to assess the numerical accuracy of numerical algorithm for thermocapillary flows.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.04.104</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2019-08, Vol.138, p.809-824 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2253257252 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithms Boltzmann transport equation Computational fluid dynamics Computer simulation Density ratio Diffuse interface method Distribution functions Fluid flow Hydrodynamics Large density ratio Lattice Boltzmann method Mathematical models Microchannels Numerical analysis Numerical stability Parameters Temperature distribution Thermal conductivity Thermocapillary flows Thermophysical models Thermophysical parameters contrasts Velocity distribution |
title | A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20diffuse%20interface%20lattice%20Boltzmann%20model%20for%20thermocapillary%20flows%20with%20large%20density%20ratio%20and%20thermophysical%20parameters%20contrasts&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Hu,%20Yang&rft.date=2019-08-01&rft.volume=138&rft.spage=809&rft.epage=824&rft.pages=809-824&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.04.104&rft_dat=%3Cproquest_cross%3E2253257252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-16b5ed14e01efa635e1ca8d4de76c1f58a0b79484424dc35f23fe1af7d00f3963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253257252&rft_id=info:pmid/&rfr_iscdi=true |