Loading…

Full-State Regulation Control of Asymmetric Underactuated Surface Vehicles

In this paper, a challenging problem of full-state regulation control (FSRC) for an asymmetric underactuated surface vehicle (AUSV) suffering from disturbances is solved. The FSRC objective is divided into two subtasks, i.e., reaching trajectory (RT) guidance and tracking controller synthesis with u...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2019-11, Vol.66 (11), p.8741-8750
Main Authors: Wang, Ning, Xie, Guangming, Pan, Xinxiang, Su, Shun-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a challenging problem of full-state regulation control (FSRC) for an asymmetric underactuated surface vehicle (AUSV) suffering from disturbances is solved. The FSRC objective is divided into two subtasks, i.e., reaching trajectory (RT) guidance and tracking controller synthesis with underactuation and disturbances. The RT guidance is achieved by devising a circular orbit (CO) accurately passing through the desired full-state waypoint (FWP). Using a series of coordinate transformations, tracking error dynamics are shaped in a translation-rotation cascade form with respect to the CO-center frame. Using finite-time approach, lumped disturbances are accurately estimated by exact observers, which facilitate synthesizing surge and yaw controllers. By creating a new coordinate, translation subsystem is converted to a lower-triangular form. Combining with backstepping technique, cascade analysis and Lypunov approach, translation and rotation controllers are derived systematically, and render the entire closed-loop FSRC system globally asymptotically stable. Hence, the AUSV is regulated to the desired FWP. Simulation studies on a benchmark AUSV are conducted to demonstrate remarkable performance.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2018.2890500