Loading…
Multirate Factor Analysis Models for Fault Detection in Multirate Processes
Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of...
Saved in:
Published in: | IEEE transactions on industrial informatics 2019-07, Vol.15 (7), p.4076-4085 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3 |
container_end_page | 4085 |
container_issue | 7 |
container_start_page | 4076 |
container_title | IEEE transactions on industrial informatics |
container_volume | 15 |
creator | Zhou, Le Wang, Yaoxin Ge, Zhiqiang Song, Zhihuan |
description | Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of multirate factor analysis models is developed for process modeling and fault detection purpose in the multirate processes. In the proposed model, the cross correlations are described and bounded by the common factors and the model parameters are calibrated using the expectation-maximum algorithms. Also, the proposed models are further discussed both from theoretical and geometric perspective. Finally, the proposed fault detection methods are tested by a simulated Tennessee-Eastman process and a real R2S anaerobic reactor unit in the wastewater treatment process. |
doi_str_mv | 10.1109/TII.2018.2889750 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253468636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8590697</ieee_id><sourcerecordid>2253468636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt3wcuC562Tj9kkx1KtFlv0UM8h3Z3ClrVbk_TQf29Ki57mZXjeYXgYu-cw4hzs03I2GwngZiSMsRrhgg24VbwEQLjMGZGXUoC8ZjcxbgCkBmkH7H2x71IbfKJi6uvUh2K89d0htrFY9A11sVjn3dRnqnimRHVq-23Rbov_3mfoa4qR4i27Wvsu0t15DtnX9GU5eSvnH6-zyXhe1sLyVBISSc05KY26kcDrqvGoBK5Mw5VQqGQjta60qAzW0itEiybTDWkhmpUcssfT3V3of_YUk9v0-5Dfjk4IlKoylawyBSeqDn2MgdZuF9pvHw6Ogzsqc1mZOypzZ2W58nCqtET0hxu0UFktfwEvIGX3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253468636</pqid></control><display><type>article</type><title>Multirate Factor Analysis Models for Fault Detection in Multirate Processes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhou, Le ; Wang, Yaoxin ; Ge, Zhiqiang ; Song, Zhihuan</creator><creatorcontrib>Zhou, Le ; Wang, Yaoxin ; Ge, Zhiqiang ; Song, Zhihuan</creatorcontrib><description>Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of multirate factor analysis models is developed for process modeling and fault detection purpose in the multirate processes. In the proposed model, the cross correlations are described and bounded by the common factors and the model parameters are calibrated using the expectation-maximum algorithms. Also, the proposed models are further discussed both from theoretical and geometric perspective. Finally, the proposed fault detection methods are tested by a simulated Tennessee-Eastman process and a real R2S anaerobic reactor unit in the wastewater treatment process.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2889750</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Anaerobic processes ; Analytical models ; Computer simulation ; EM algorithm ; Factor analysis ; Fault detection ; Informatics ; Load modeling ; Monitoring ; multirate factor analysis ; multirate process ; Principal component analysis ; Probabilistic logic ; Statistical methods ; Wastewater treatment</subject><ispartof>IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.4076-4085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3</citedby><cites>FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3</cites><orcidid>0000-0003-4098-6479 ; 0000-0002-7852-1370 ; 0000-0001-7828-0856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8590697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhou, Le</creatorcontrib><creatorcontrib>Wang, Yaoxin</creatorcontrib><creatorcontrib>Ge, Zhiqiang</creatorcontrib><creatorcontrib>Song, Zhihuan</creatorcontrib><title>Multirate Factor Analysis Models for Fault Detection in Multirate Processes</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of multirate factor analysis models is developed for process modeling and fault detection purpose in the multirate processes. In the proposed model, the cross correlations are described and bounded by the common factors and the model parameters are calibrated using the expectation-maximum algorithms. Also, the proposed models are further discussed both from theoretical and geometric perspective. Finally, the proposed fault detection methods are tested by a simulated Tennessee-Eastman process and a real R2S anaerobic reactor unit in the wastewater treatment process.</description><subject>Algorithms</subject><subject>Anaerobic processes</subject><subject>Analytical models</subject><subject>Computer simulation</subject><subject>EM algorithm</subject><subject>Factor analysis</subject><subject>Fault detection</subject><subject>Informatics</subject><subject>Load modeling</subject><subject>Monitoring</subject><subject>multirate factor analysis</subject><subject>multirate process</subject><subject>Principal component analysis</subject><subject>Probabilistic logic</subject><subject>Statistical methods</subject><subject>Wastewater treatment</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKt3wcuC562Tj9kkx1KtFlv0UM8h3Z3ClrVbk_TQf29Ki57mZXjeYXgYu-cw4hzs03I2GwngZiSMsRrhgg24VbwEQLjMGZGXUoC8ZjcxbgCkBmkH7H2x71IbfKJi6uvUh2K89d0htrFY9A11sVjn3dRnqnimRHVq-23Rbov_3mfoa4qR4i27Wvsu0t15DtnX9GU5eSvnH6-zyXhe1sLyVBISSc05KY26kcDrqvGoBK5Mw5VQqGQjta60qAzW0itEiybTDWkhmpUcssfT3V3of_YUk9v0-5Dfjk4IlKoylawyBSeqDn2MgdZuF9pvHw6Ogzsqc1mZOypzZ2W58nCqtET0hxu0UFktfwEvIGX3</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Zhou, Le</creator><creator>Wang, Yaoxin</creator><creator>Ge, Zhiqiang</creator><creator>Song, Zhihuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4098-6479</orcidid><orcidid>https://orcid.org/0000-0002-7852-1370</orcidid><orcidid>https://orcid.org/0000-0001-7828-0856</orcidid></search><sort><creationdate>20190701</creationdate><title>Multirate Factor Analysis Models for Fault Detection in Multirate Processes</title><author>Zhou, Le ; Wang, Yaoxin ; Ge, Zhiqiang ; Song, Zhihuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Anaerobic processes</topic><topic>Analytical models</topic><topic>Computer simulation</topic><topic>EM algorithm</topic><topic>Factor analysis</topic><topic>Fault detection</topic><topic>Informatics</topic><topic>Load modeling</topic><topic>Monitoring</topic><topic>multirate factor analysis</topic><topic>multirate process</topic><topic>Principal component analysis</topic><topic>Probabilistic logic</topic><topic>Statistical methods</topic><topic>Wastewater treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Le</creatorcontrib><creatorcontrib>Wang, Yaoxin</creatorcontrib><creatorcontrib>Ge, Zhiqiang</creatorcontrib><creatorcontrib>Song, Zhihuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Le</au><au>Wang, Yaoxin</au><au>Ge, Zhiqiang</au><au>Song, Zhihuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multirate Factor Analysis Models for Fault Detection in Multirate Processes</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>15</volume><issue>7</issue><spage>4076</spage><epage>4085</epage><pages>4076-4085</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of multirate factor analysis models is developed for process modeling and fault detection purpose in the multirate processes. In the proposed model, the cross correlations are described and bounded by the common factors and the model parameters are calibrated using the expectation-maximum algorithms. Also, the proposed models are further discussed both from theoretical and geometric perspective. Finally, the proposed fault detection methods are tested by a simulated Tennessee-Eastman process and a real R2S anaerobic reactor unit in the wastewater treatment process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2889750</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4098-6479</orcidid><orcidid>https://orcid.org/0000-0002-7852-1370</orcidid><orcidid>https://orcid.org/0000-0001-7828-0856</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.4076-4085 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2253468636 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Anaerobic processes Analytical models Computer simulation EM algorithm Factor analysis Fault detection Informatics Load modeling Monitoring multirate factor analysis multirate process Principal component analysis Probabilistic logic Statistical methods Wastewater treatment |
title | Multirate Factor Analysis Models for Fault Detection in Multirate Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multirate%20Factor%20Analysis%20Models%20for%20Fault%20Detection%20in%20Multirate%20Processes&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhou,%20Le&rft.date=2019-07-01&rft.volume=15&rft.issue=7&rft.spage=4076&rft.epage=4085&rft.pages=4076-4085&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2889750&rft_dat=%3Cproquest_cross%3E2253468636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253468636&rft_id=info:pmid/&rft_ieee_id=8590697&rfr_iscdi=true |