Loading…

Multirate Factor Analysis Models for Fault Detection in Multirate Processes

Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2019-07, Vol.15 (7), p.4076-4085
Main Authors: Zhou, Le, Wang, Yaoxin, Ge, Zhiqiang, Song, Zhihuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3
cites cdi_FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3
container_end_page 4085
container_issue 7
container_start_page 4076
container_title IEEE transactions on industrial informatics
container_volume 15
creator Zhou, Le
Wang, Yaoxin
Ge, Zhiqiang
Song, Zhihuan
description Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of multirate factor analysis models is developed for process modeling and fault detection purpose in the multirate processes. In the proposed model, the cross correlations are described and bounded by the common factors and the model parameters are calibrated using the expectation-maximum algorithms. Also, the proposed models are further discussed both from theoretical and geometric perspective. Finally, the proposed fault detection methods are tested by a simulated Tennessee-Eastman process and a real R2S anaerobic reactor unit in the wastewater treatment process.
doi_str_mv 10.1109/TII.2018.2889750
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253468636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8590697</ieee_id><sourcerecordid>2253468636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt3wcuC562Tj9kkx1KtFlv0UM8h3Z3ClrVbk_TQf29Ki57mZXjeYXgYu-cw4hzs03I2GwngZiSMsRrhgg24VbwEQLjMGZGXUoC8ZjcxbgCkBmkH7H2x71IbfKJi6uvUh2K89d0htrFY9A11sVjn3dRnqnimRHVq-23Rbov_3mfoa4qR4i27Wvsu0t15DtnX9GU5eSvnH6-zyXhe1sLyVBISSc05KY26kcDrqvGoBK5Mw5VQqGQjta60qAzW0itEiybTDWkhmpUcssfT3V3of_YUk9v0-5Dfjk4IlKoylawyBSeqDn2MgdZuF9pvHw6Ogzsqc1mZOypzZ2W58nCqtET0hxu0UFktfwEvIGX3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253468636</pqid></control><display><type>article</type><title>Multirate Factor Analysis Models for Fault Detection in Multirate Processes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhou, Le ; Wang, Yaoxin ; Ge, Zhiqiang ; Song, Zhihuan</creator><creatorcontrib>Zhou, Le ; Wang, Yaoxin ; Ge, Zhiqiang ; Song, Zhihuan</creatorcontrib><description>Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of multirate factor analysis models is developed for process modeling and fault detection purpose in the multirate processes. In the proposed model, the cross correlations are described and bounded by the common factors and the model parameters are calibrated using the expectation-maximum algorithms. Also, the proposed models are further discussed both from theoretical and geometric perspective. Finally, the proposed fault detection methods are tested by a simulated Tennessee-Eastman process and a real R2S anaerobic reactor unit in the wastewater treatment process.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2889750</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Anaerobic processes ; Analytical models ; Computer simulation ; EM algorithm ; Factor analysis ; Fault detection ; Informatics ; Load modeling ; Monitoring ; multirate factor analysis ; multirate process ; Principal component analysis ; Probabilistic logic ; Statistical methods ; Wastewater treatment</subject><ispartof>IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.4076-4085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3</citedby><cites>FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3</cites><orcidid>0000-0003-4098-6479 ; 0000-0002-7852-1370 ; 0000-0001-7828-0856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8590697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhou, Le</creatorcontrib><creatorcontrib>Wang, Yaoxin</creatorcontrib><creatorcontrib>Ge, Zhiqiang</creatorcontrib><creatorcontrib>Song, Zhihuan</creatorcontrib><title>Multirate Factor Analysis Models for Fault Detection in Multirate Processes</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of multirate factor analysis models is developed for process modeling and fault detection purpose in the multirate processes. In the proposed model, the cross correlations are described and bounded by the common factors and the model parameters are calibrated using the expectation-maximum algorithms. Also, the proposed models are further discussed both from theoretical and geometric perspective. Finally, the proposed fault detection methods are tested by a simulated Tennessee-Eastman process and a real R2S anaerobic reactor unit in the wastewater treatment process.</description><subject>Algorithms</subject><subject>Anaerobic processes</subject><subject>Analytical models</subject><subject>Computer simulation</subject><subject>EM algorithm</subject><subject>Factor analysis</subject><subject>Fault detection</subject><subject>Informatics</subject><subject>Load modeling</subject><subject>Monitoring</subject><subject>multirate factor analysis</subject><subject>multirate process</subject><subject>Principal component analysis</subject><subject>Probabilistic logic</subject><subject>Statistical methods</subject><subject>Wastewater treatment</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKt3wcuC562Tj9kkx1KtFlv0UM8h3Z3ClrVbk_TQf29Ki57mZXjeYXgYu-cw4hzs03I2GwngZiSMsRrhgg24VbwEQLjMGZGXUoC8ZjcxbgCkBmkH7H2x71IbfKJi6uvUh2K89d0htrFY9A11sVjn3dRnqnimRHVq-23Rbov_3mfoa4qR4i27Wvsu0t15DtnX9GU5eSvnH6-zyXhe1sLyVBISSc05KY26kcDrqvGoBK5Mw5VQqGQjta60qAzW0itEiybTDWkhmpUcssfT3V3of_YUk9v0-5Dfjk4IlKoylawyBSeqDn2MgdZuF9pvHw6Ogzsqc1mZOypzZ2W58nCqtET0hxu0UFktfwEvIGX3</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Zhou, Le</creator><creator>Wang, Yaoxin</creator><creator>Ge, Zhiqiang</creator><creator>Song, Zhihuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4098-6479</orcidid><orcidid>https://orcid.org/0000-0002-7852-1370</orcidid><orcidid>https://orcid.org/0000-0001-7828-0856</orcidid></search><sort><creationdate>20190701</creationdate><title>Multirate Factor Analysis Models for Fault Detection in Multirate Processes</title><author>Zhou, Le ; Wang, Yaoxin ; Ge, Zhiqiang ; Song, Zhihuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Anaerobic processes</topic><topic>Analytical models</topic><topic>Computer simulation</topic><topic>EM algorithm</topic><topic>Factor analysis</topic><topic>Fault detection</topic><topic>Informatics</topic><topic>Load modeling</topic><topic>Monitoring</topic><topic>multirate factor analysis</topic><topic>multirate process</topic><topic>Principal component analysis</topic><topic>Probabilistic logic</topic><topic>Statistical methods</topic><topic>Wastewater treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Le</creatorcontrib><creatorcontrib>Wang, Yaoxin</creatorcontrib><creatorcontrib>Ge, Zhiqiang</creatorcontrib><creatorcontrib>Song, Zhihuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Le</au><au>Wang, Yaoxin</au><au>Ge, Zhiqiang</au><au>Song, Zhihuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multirate Factor Analysis Models for Fault Detection in Multirate Processes</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>15</volume><issue>7</issue><spage>4076</spage><epage>4085</epage><pages>4076-4085</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Generally, the measurements of modern industries are collected from different sources, which indicates that the traditional multivariate statistical process monitoring methods cannot be directly used in the multirate systems if one aims to utilize the complete multirate measurements. Hence, a set of multirate factor analysis models is developed for process modeling and fault detection purpose in the multirate processes. In the proposed model, the cross correlations are described and bounded by the common factors and the model parameters are calibrated using the expectation-maximum algorithms. Also, the proposed models are further discussed both from theoretical and geometric perspective. Finally, the proposed fault detection methods are tested by a simulated Tennessee-Eastman process and a real R2S anaerobic reactor unit in the wastewater treatment process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2889750</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4098-6479</orcidid><orcidid>https://orcid.org/0000-0002-7852-1370</orcidid><orcidid>https://orcid.org/0000-0001-7828-0856</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.4076-4085
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2253468636
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Anaerobic processes
Analytical models
Computer simulation
EM algorithm
Factor analysis
Fault detection
Informatics
Load modeling
Monitoring
multirate factor analysis
multirate process
Principal component analysis
Probabilistic logic
Statistical methods
Wastewater treatment
title Multirate Factor Analysis Models for Fault Detection in Multirate Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multirate%20Factor%20Analysis%20Models%20for%20Fault%20Detection%20in%20Multirate%20Processes&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhou,%20Le&rft.date=2019-07-01&rft.volume=15&rft.issue=7&rft.spage=4076&rft.epage=4085&rft.pages=4076-4085&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2889750&rft_dat=%3Cproquest_cross%3E2253468636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-e5ee3711e4757d301c6da5425b8d1424543d377672685c3a455958e47de722db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253468636&rft_id=info:pmid/&rft_ieee_id=8590697&rfr_iscdi=true