Loading…

A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems

A workshop was recently held at Nagoya University (31 October - 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of today's operationa...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-07
Main Authors: Leka, K D, Sung-Hong, Park, Kusano, Kanya, Andries, Jesse, Barnes, Graham, Bingham, Suzy, Bloomfield, D Shaun, McCloskey, Aoife E, Delouille, Veronique, Falconer, David, Gallagher, Peter T, Georgoulis, Manolis K, Kubo, Yuki, Lee, Kangjin, Lee, Sangwoo, Lobzin, Vasily, Mun, JunChul, Murray, Sophie A, Tarek A M Hamad Nageem, Qahwaji, Rami, Sharpe, Michael, Steenburgh, Rob, Steward, Graham, Terkildsen, Michael
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Leka, K D
Sung-Hong, Park
Kusano, Kanya
Andries, Jesse
Barnes, Graham
Bingham, Suzy
Bloomfield, D Shaun
McCloskey, Aoife E
Delouille, Veronique
Falconer, David
Gallagher, Peter T
Georgoulis, Manolis K
Kubo, Yuki
Lee, Kangjin
Lee, Sangwoo
Lobzin, Vasily
Mun, JunChul
Murray, Sophie A
Tarek A M Hamad Nageem
Qahwaji, Rami
Sharpe, Michael
Steenburgh, Rob
Steward, Graham
Terkildsen, Michael
description A workshop was recently held at Nagoya University (31 October - 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of today's operational solar flare forecasting facilities. Building upon Paper I of this series (Barnes et al. 2016), in Paper II (Leka et al. 2019) we described the participating methods for this latest comparison effort, the evaluation methodology, and presented quantitative comparisons. In this paper we focus on the behavior and performance of the methods when evaluated in the context of broad implementation differences. Acknowledging the short testing interval available and the small number of methods available, we do find that forecast performance: 1) appears to improve by including persistence or prior flare activity, region evolution, and a human "forecaster in the loop"; 2) is hurt by restricting data to disk-center observations; 3) may benefit from long-term statistics, but mostly when then combined with modern data sources and statistical approaches. These trends are arguably weak and must be viewed with numerous caveats, as discussed both here and in Paper II. Following this present work, we present in Paper IV a novel analysis method to evaluate temporal patterns of forecasting errors of both types (i.e., misses and false alarms; Park et al. 2019). Hence, most importantly, with this series of papers we demonstrate the techniques for facilitating comparisons in the interest of establishing performance-positive methodologies.
doi_str_mv 10.48550/arxiv.1907.02909
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2253605620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253605620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-f910d1cf59337d59a9227fcf6c5ef5fdafb6111ed6e5ea9859789e643baa62d53</originalsourceid><addsrcrecordid>eNptjsFqAjEURUOhULF-QHeBrmeavPgyk6WVTjtgcaF7ec681BE1Nhml_fta7LKrCwfO4QrxoFU-LhHVE8Wv7pxrp4pcgVPuRgzAGJ2VY4A7MUppq5QCWwCiGYg0kdOwP1LsUjjI4GW1o8iyCpEbSn13-JDv3G9Cm3JZ13UuF9-p5z31XSOfeUPnLsT0682PHC80HGgnF-ES-ad0ddO9uPW0Szz626FYVi_L6Vs2m7_W08ksIwSVeadVqxuPzpiiRUcOoPCNtw2yR9-SX1utNbeWkcmV6IrSsR2bNZGFFs1QPF6zxxg-T5z61Tac4uVfWgGgsQotKPMDMJldQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253605620</pqid></control><display><type>article</type><title>A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems</title><source>Publicly Available Content Database</source><creator>Leka, K D ; Sung-Hong, Park ; Kusano, Kanya ; Andries, Jesse ; Barnes, Graham ; Bingham, Suzy ; Bloomfield, D Shaun ; McCloskey, Aoife E ; Delouille, Veronique ; Falconer, David ; Gallagher, Peter T ; Georgoulis, Manolis K ; Kubo, Yuki ; Lee, Kangjin ; Lee, Sangwoo ; Lobzin, Vasily ; Mun, JunChul ; Murray, Sophie A ; Tarek A M Hamad Nageem ; Qahwaji, Rami ; Sharpe, Michael ; Steenburgh, Rob ; Steward, Graham ; Terkildsen, Michael</creator><creatorcontrib>Leka, K D ; Sung-Hong, Park ; Kusano, Kanya ; Andries, Jesse ; Barnes, Graham ; Bingham, Suzy ; Bloomfield, D Shaun ; McCloskey, Aoife E ; Delouille, Veronique ; Falconer, David ; Gallagher, Peter T ; Georgoulis, Manolis K ; Kubo, Yuki ; Lee, Kangjin ; Lee, Sangwoo ; Lobzin, Vasily ; Mun, JunChul ; Murray, Sophie A ; Tarek A M Hamad Nageem ; Qahwaji, Rami ; Sharpe, Michael ; Steenburgh, Rob ; Steward, Graham ; Terkildsen, Michael</creatorcontrib><description>A workshop was recently held at Nagoya University (31 October - 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of today's operational solar flare forecasting facilities. Building upon Paper I of this series (Barnes et al. 2016), in Paper II (Leka et al. 2019) we described the participating methods for this latest comparison effort, the evaluation methodology, and presented quantitative comparisons. In this paper we focus on the behavior and performance of the methods when evaluated in the context of broad implementation differences. Acknowledging the short testing interval available and the small number of methods available, we do find that forecast performance: 1) appears to improve by including persistence or prior flare activity, region evolution, and a human "forecaster in the loop"; 2) is hurt by restricting data to disk-center observations; 3) may benefit from long-term statistics, but mostly when then combined with modern data sources and statistical approaches. These trends are arguably weak and must be viewed with numerous caveats, as discussed both here and in Paper II. Following this present work, we present in Paper IV a novel analysis method to evaluate temporal patterns of forecasting errors of both types (i.e., misses and false alarms; Park et al. 2019). Hence, most importantly, with this series of papers we demonstrate the techniques for facilitating comparisons in the interest of establishing performance-positive methodologies.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1907.02909</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>False alarms ; Forecasting ; Solar flares</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2253605620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Leka, K D</creatorcontrib><creatorcontrib>Sung-Hong, Park</creatorcontrib><creatorcontrib>Kusano, Kanya</creatorcontrib><creatorcontrib>Andries, Jesse</creatorcontrib><creatorcontrib>Barnes, Graham</creatorcontrib><creatorcontrib>Bingham, Suzy</creatorcontrib><creatorcontrib>Bloomfield, D Shaun</creatorcontrib><creatorcontrib>McCloskey, Aoife E</creatorcontrib><creatorcontrib>Delouille, Veronique</creatorcontrib><creatorcontrib>Falconer, David</creatorcontrib><creatorcontrib>Gallagher, Peter T</creatorcontrib><creatorcontrib>Georgoulis, Manolis K</creatorcontrib><creatorcontrib>Kubo, Yuki</creatorcontrib><creatorcontrib>Lee, Kangjin</creatorcontrib><creatorcontrib>Lee, Sangwoo</creatorcontrib><creatorcontrib>Lobzin, Vasily</creatorcontrib><creatorcontrib>Mun, JunChul</creatorcontrib><creatorcontrib>Murray, Sophie A</creatorcontrib><creatorcontrib>Tarek A M Hamad Nageem</creatorcontrib><creatorcontrib>Qahwaji, Rami</creatorcontrib><creatorcontrib>Sharpe, Michael</creatorcontrib><creatorcontrib>Steenburgh, Rob</creatorcontrib><creatorcontrib>Steward, Graham</creatorcontrib><creatorcontrib>Terkildsen, Michael</creatorcontrib><title>A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems</title><title>arXiv.org</title><description>A workshop was recently held at Nagoya University (31 October - 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of today's operational solar flare forecasting facilities. Building upon Paper I of this series (Barnes et al. 2016), in Paper II (Leka et al. 2019) we described the participating methods for this latest comparison effort, the evaluation methodology, and presented quantitative comparisons. In this paper we focus on the behavior and performance of the methods when evaluated in the context of broad implementation differences. Acknowledging the short testing interval available and the small number of methods available, we do find that forecast performance: 1) appears to improve by including persistence or prior flare activity, region evolution, and a human "forecaster in the loop"; 2) is hurt by restricting data to disk-center observations; 3) may benefit from long-term statistics, but mostly when then combined with modern data sources and statistical approaches. These trends are arguably weak and must be viewed with numerous caveats, as discussed both here and in Paper II. Following this present work, we present in Paper IV a novel analysis method to evaluate temporal patterns of forecasting errors of both types (i.e., misses and false alarms; Park et al. 2019). Hence, most importantly, with this series of papers we demonstrate the techniques for facilitating comparisons in the interest of establishing performance-positive methodologies.</description><subject>False alarms</subject><subject>Forecasting</subject><subject>Solar flares</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptjsFqAjEURUOhULF-QHeBrmeavPgyk6WVTjtgcaF7ec681BE1Nhml_fta7LKrCwfO4QrxoFU-LhHVE8Wv7pxrp4pcgVPuRgzAGJ2VY4A7MUppq5QCWwCiGYg0kdOwP1LsUjjI4GW1o8iyCpEbSn13-JDv3G9Cm3JZ13UuF9-p5z31XSOfeUPnLsT0682PHC80HGgnF-ES-ad0ddO9uPW0Szz626FYVi_L6Vs2m7_W08ksIwSVeadVqxuPzpiiRUcOoPCNtw2yR9-SX1utNbeWkcmV6IrSsR2bNZGFFs1QPF6zxxg-T5z61Tac4uVfWgGgsQotKPMDMJldQw</recordid><startdate>20190705</startdate><enddate>20190705</enddate><creator>Leka, K D</creator><creator>Sung-Hong, Park</creator><creator>Kusano, Kanya</creator><creator>Andries, Jesse</creator><creator>Barnes, Graham</creator><creator>Bingham, Suzy</creator><creator>Bloomfield, D Shaun</creator><creator>McCloskey, Aoife E</creator><creator>Delouille, Veronique</creator><creator>Falconer, David</creator><creator>Gallagher, Peter T</creator><creator>Georgoulis, Manolis K</creator><creator>Kubo, Yuki</creator><creator>Lee, Kangjin</creator><creator>Lee, Sangwoo</creator><creator>Lobzin, Vasily</creator><creator>Mun, JunChul</creator><creator>Murray, Sophie A</creator><creator>Tarek A M Hamad Nageem</creator><creator>Qahwaji, Rami</creator><creator>Sharpe, Michael</creator><creator>Steenburgh, Rob</creator><creator>Steward, Graham</creator><creator>Terkildsen, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190705</creationdate><title>A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems</title><author>Leka, K D ; Sung-Hong, Park ; Kusano, Kanya ; Andries, Jesse ; Barnes, Graham ; Bingham, Suzy ; Bloomfield, D Shaun ; McCloskey, Aoife E ; Delouille, Veronique ; Falconer, David ; Gallagher, Peter T ; Georgoulis, Manolis K ; Kubo, Yuki ; Lee, Kangjin ; Lee, Sangwoo ; Lobzin, Vasily ; Mun, JunChul ; Murray, Sophie A ; Tarek A M Hamad Nageem ; Qahwaji, Rami ; Sharpe, Michael ; Steenburgh, Rob ; Steward, Graham ; Terkildsen, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-f910d1cf59337d59a9227fcf6c5ef5fdafb6111ed6e5ea9859789e643baa62d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>False alarms</topic><topic>Forecasting</topic><topic>Solar flares</topic><toplevel>online_resources</toplevel><creatorcontrib>Leka, K D</creatorcontrib><creatorcontrib>Sung-Hong, Park</creatorcontrib><creatorcontrib>Kusano, Kanya</creatorcontrib><creatorcontrib>Andries, Jesse</creatorcontrib><creatorcontrib>Barnes, Graham</creatorcontrib><creatorcontrib>Bingham, Suzy</creatorcontrib><creatorcontrib>Bloomfield, D Shaun</creatorcontrib><creatorcontrib>McCloskey, Aoife E</creatorcontrib><creatorcontrib>Delouille, Veronique</creatorcontrib><creatorcontrib>Falconer, David</creatorcontrib><creatorcontrib>Gallagher, Peter T</creatorcontrib><creatorcontrib>Georgoulis, Manolis K</creatorcontrib><creatorcontrib>Kubo, Yuki</creatorcontrib><creatorcontrib>Lee, Kangjin</creatorcontrib><creatorcontrib>Lee, Sangwoo</creatorcontrib><creatorcontrib>Lobzin, Vasily</creatorcontrib><creatorcontrib>Mun, JunChul</creatorcontrib><creatorcontrib>Murray, Sophie A</creatorcontrib><creatorcontrib>Tarek A M Hamad Nageem</creatorcontrib><creatorcontrib>Qahwaji, Rami</creatorcontrib><creatorcontrib>Sharpe, Michael</creatorcontrib><creatorcontrib>Steenburgh, Rob</creatorcontrib><creatorcontrib>Steward, Graham</creatorcontrib><creatorcontrib>Terkildsen, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leka, K D</au><au>Sung-Hong, Park</au><au>Kusano, Kanya</au><au>Andries, Jesse</au><au>Barnes, Graham</au><au>Bingham, Suzy</au><au>Bloomfield, D Shaun</au><au>McCloskey, Aoife E</au><au>Delouille, Veronique</au><au>Falconer, David</au><au>Gallagher, Peter T</au><au>Georgoulis, Manolis K</au><au>Kubo, Yuki</au><au>Lee, Kangjin</au><au>Lee, Sangwoo</au><au>Lobzin, Vasily</au><au>Mun, JunChul</au><au>Murray, Sophie A</au><au>Tarek A M Hamad Nageem</au><au>Qahwaji, Rami</au><au>Sharpe, Michael</au><au>Steenburgh, Rob</au><au>Steward, Graham</au><au>Terkildsen, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems</atitle><jtitle>arXiv.org</jtitle><date>2019-07-05</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>A workshop was recently held at Nagoya University (31 October - 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of today's operational solar flare forecasting facilities. Building upon Paper I of this series (Barnes et al. 2016), in Paper II (Leka et al. 2019) we described the participating methods for this latest comparison effort, the evaluation methodology, and presented quantitative comparisons. In this paper we focus on the behavior and performance of the methods when evaluated in the context of broad implementation differences. Acknowledging the short testing interval available and the small number of methods available, we do find that forecast performance: 1) appears to improve by including persistence or prior flare activity, region evolution, and a human "forecaster in the loop"; 2) is hurt by restricting data to disk-center observations; 3) may benefit from long-term statistics, but mostly when then combined with modern data sources and statistical approaches. These trends are arguably weak and must be viewed with numerous caveats, as discussed both here and in Paper II. Following this present work, we present in Paper IV a novel analysis method to evaluate temporal patterns of forecasting errors of both types (i.e., misses and false alarms; Park et al. 2019). Hence, most importantly, with this series of papers we demonstrate the techniques for facilitating comparisons in the interest of establishing performance-positive methodologies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1907.02909</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2253605620
source Publicly Available Content Database
subjects False alarms
Forecasting
Solar flares
title A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Flare%20Forecasting%20Methods.%20III.%20Systematic%20Behaviors%20of%20Operational%20Solar%20Flare%20Forecasting%20Systems&rft.jtitle=arXiv.org&rft.au=Leka,%20K%20D&rft.date=2019-07-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1907.02909&rft_dat=%3Cproquest%3E2253605620%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-f910d1cf59337d59a9227fcf6c5ef5fdafb6111ed6e5ea9859789e643baa62d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253605620&rft_id=info:pmid/&rfr_iscdi=true