Loading…

A dimensional reduction guiding deep learning architecture for 3D shape retrieval

•A method for extracting short descriptors from lengthy descriptors is developed.•The dimension reduction results are strengthened by an attraction/repulsion model.•A deep residual network is trained for generating the short descriptors.•The short descriptors improve the retrieval speed greatly. [Di...

Full description

Saved in:
Bibliographic Details
Published in:Computers & graphics 2019-06, Vol.81, p.82-91
Main Authors: Wang, Zihao, Lin, Hongwei, Yu, Xiaofeng, Hamza, Yusuf Fatihu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-573eab7171cb04ac919da9b2b5aad7ab558477e9d4df2adf98a776d584ad3b0e3
cites cdi_FETCH-LOGICAL-c325t-573eab7171cb04ac919da9b2b5aad7ab558477e9d4df2adf98a776d584ad3b0e3
container_end_page 91
container_issue
container_start_page 82
container_title Computers & graphics
container_volume 81
creator Wang, Zihao
Lin, Hongwei
Yu, Xiaofeng
Hamza, Yusuf Fatihu
description •A method for extracting short descriptors from lengthy descriptors is developed.•The dimension reduction results are strengthened by an attraction/repulsion model.•A deep residual network is trained for generating the short descriptors.•The short descriptors improve the retrieval speed greatly. [Display omitted] The state-of-the-art shape descriptors are usually lengthy for gaining high retrieval precision. With the rapidly growing number of 3-dimensional models, the retrieval speed becomes a prominent problem in shape retrieval. In this paper, by exploiting the capabilities of the dimensionality reduction methods and the deep convolutional residual network (ResNet), we developed a method for extracting short shape descriptors (with just 2 real numbers, named 2-descriptors) from lengthy descriptors, while keeping or even improving the retrieval precision of the original lengthy descriptors. Specifically, an attraction and repulsion model is devised to strengthen the direct dimensionality reduction results. In this way, the dimensionality reduction results turn into desirable labels for the ResNet. Moreover, to extract the 2-descriptors using ResNet, we transformed it as a classification problem. For this purpose, the range of each component of the dimensionality reduction results (including two components in total) is uniformly divided into n intervals corresponding to n classes. Experiments on 3D shape retrieval show that our method not only accelerates the retrieval speed greatly but also improves the retrieval precisions of the original shape descriptors.
doi_str_mv 10.1016/j.cag.2019.04.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253862243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0097849319300433</els_id><sourcerecordid>2253862243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-573eab7171cb04ac919da9b2b5aad7ab558477e9d4df2adf98a776d584ad3b0e3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFZ_gLuA68R5JZPgqtQnFETQ9XAzc9NOSJM4kxT8906pa1f3wfku9xxCbhnNGGXFfZsZ2GacsiqjMqOUn5EFK5VIVVHKc7KgtFJpKStxSa5CaGlU8EIuyMcqsW6PfXBDD13i0c5min2ynZ11_TaxiGPSIfj-OIE3OzehmWaPSTP4RDwmYQcjRnLyDg_QXZOLBrqAN391Sb6enz7Xr-nm_eVtvdqkRvB8SnMlEGrFFDM1lWAqVlmoal7nAFZBneelVAorK23DwTZVCUoVNm7BipqiWJK7093RD98zhkm3w-yjiaA5z0VZcC5FVLGTyvghBI-NHr3bg__RjOpjcrrVMTl9TE5TqWMukXk4MRjfPzj0OhiHvUHrfLSu7eD-oX8BSlt29Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253862243</pqid></control><display><type>article</type><title>A dimensional reduction guiding deep learning architecture for 3D shape retrieval</title><source>Elsevier</source><creator>Wang, Zihao ; Lin, Hongwei ; Yu, Xiaofeng ; Hamza, Yusuf Fatihu</creator><creatorcontrib>Wang, Zihao ; Lin, Hongwei ; Yu, Xiaofeng ; Hamza, Yusuf Fatihu</creatorcontrib><description>•A method for extracting short descriptors from lengthy descriptors is developed.•The dimension reduction results are strengthened by an attraction/repulsion model.•A deep residual network is trained for generating the short descriptors.•The short descriptors improve the retrieval speed greatly. [Display omitted] The state-of-the-art shape descriptors are usually lengthy for gaining high retrieval precision. With the rapidly growing number of 3-dimensional models, the retrieval speed becomes a prominent problem in shape retrieval. In this paper, by exploiting the capabilities of the dimensionality reduction methods and the deep convolutional residual network (ResNet), we developed a method for extracting short shape descriptors (with just 2 real numbers, named 2-descriptors) from lengthy descriptors, while keeping or even improving the retrieval precision of the original lengthy descriptors. Specifically, an attraction and repulsion model is devised to strengthen the direct dimensionality reduction results. In this way, the dimensionality reduction results turn into desirable labels for the ResNet. Moreover, to extract the 2-descriptors using ResNet, we transformed it as a classification problem. For this purpose, the range of each component of the dimensionality reduction results (including two components in total) is uniformly divided into n intervals corresponding to n classes. Experiments on 3D shape retrieval show that our method not only accelerates the retrieval speed greatly but also improves the retrieval precisions of the original shape descriptors.</description><identifier>ISSN: 0097-8493</identifier><identifier>EISSN: 1873-7684</identifier><identifier>DOI: 10.1016/j.cag.2019.04.002</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Deep learning ; Dimensionality reduction ; Real numbers ; Reduction ; ResNet ; Retrieval ; Shape descriptor ; Shape recognition ; Shape retrieval ; Three dimensional models</subject><ispartof>Computers &amp; graphics, 2019-06, Vol.81, p.82-91</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-573eab7171cb04ac919da9b2b5aad7ab558477e9d4df2adf98a776d584ad3b0e3</citedby><cites>FETCH-LOGICAL-c325t-573eab7171cb04ac919da9b2b5aad7ab558477e9d4df2adf98a776d584ad3b0e3</cites><orcidid>0000-0002-9337-9624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Lin, Hongwei</creatorcontrib><creatorcontrib>Yu, Xiaofeng</creatorcontrib><creatorcontrib>Hamza, Yusuf Fatihu</creatorcontrib><title>A dimensional reduction guiding deep learning architecture for 3D shape retrieval</title><title>Computers &amp; graphics</title><description>•A method for extracting short descriptors from lengthy descriptors is developed.•The dimension reduction results are strengthened by an attraction/repulsion model.•A deep residual network is trained for generating the short descriptors.•The short descriptors improve the retrieval speed greatly. [Display omitted] The state-of-the-art shape descriptors are usually lengthy for gaining high retrieval precision. With the rapidly growing number of 3-dimensional models, the retrieval speed becomes a prominent problem in shape retrieval. In this paper, by exploiting the capabilities of the dimensionality reduction methods and the deep convolutional residual network (ResNet), we developed a method for extracting short shape descriptors (with just 2 real numbers, named 2-descriptors) from lengthy descriptors, while keeping or even improving the retrieval precision of the original lengthy descriptors. Specifically, an attraction and repulsion model is devised to strengthen the direct dimensionality reduction results. In this way, the dimensionality reduction results turn into desirable labels for the ResNet. Moreover, to extract the 2-descriptors using ResNet, we transformed it as a classification problem. For this purpose, the range of each component of the dimensionality reduction results (including two components in total) is uniformly divided into n intervals corresponding to n classes. Experiments on 3D shape retrieval show that our method not only accelerates the retrieval speed greatly but also improves the retrieval precisions of the original shape descriptors.</description><subject>Deep learning</subject><subject>Dimensionality reduction</subject><subject>Real numbers</subject><subject>Reduction</subject><subject>ResNet</subject><subject>Retrieval</subject><subject>Shape descriptor</subject><subject>Shape recognition</subject><subject>Shape retrieval</subject><subject>Three dimensional models</subject><issn>0097-8493</issn><issn>1873-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFZ_gLuA68R5JZPgqtQnFETQ9XAzc9NOSJM4kxT8906pa1f3wfku9xxCbhnNGGXFfZsZ2GacsiqjMqOUn5EFK5VIVVHKc7KgtFJpKStxSa5CaGlU8EIuyMcqsW6PfXBDD13i0c5min2ynZ11_TaxiGPSIfj-OIE3OzehmWaPSTP4RDwmYQcjRnLyDg_QXZOLBrqAN391Sb6enz7Xr-nm_eVtvdqkRvB8SnMlEGrFFDM1lWAqVlmoal7nAFZBneelVAorK23DwTZVCUoVNm7BipqiWJK7093RD98zhkm3w-yjiaA5z0VZcC5FVLGTyvghBI-NHr3bg__RjOpjcrrVMTl9TE5TqWMukXk4MRjfPzj0OhiHvUHrfLSu7eD-oX8BSlt29Q</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Wang, Zihao</creator><creator>Lin, Hongwei</creator><creator>Yu, Xiaofeng</creator><creator>Hamza, Yusuf Fatihu</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9337-9624</orcidid></search><sort><creationdate>201906</creationdate><title>A dimensional reduction guiding deep learning architecture for 3D shape retrieval</title><author>Wang, Zihao ; Lin, Hongwei ; Yu, Xiaofeng ; Hamza, Yusuf Fatihu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-573eab7171cb04ac919da9b2b5aad7ab558477e9d4df2adf98a776d584ad3b0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Deep learning</topic><topic>Dimensionality reduction</topic><topic>Real numbers</topic><topic>Reduction</topic><topic>ResNet</topic><topic>Retrieval</topic><topic>Shape descriptor</topic><topic>Shape recognition</topic><topic>Shape retrieval</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Lin, Hongwei</creatorcontrib><creatorcontrib>Yu, Xiaofeng</creatorcontrib><creatorcontrib>Hamza, Yusuf Fatihu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zihao</au><au>Lin, Hongwei</au><au>Yu, Xiaofeng</au><au>Hamza, Yusuf Fatihu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dimensional reduction guiding deep learning architecture for 3D shape retrieval</atitle><jtitle>Computers &amp; graphics</jtitle><date>2019-06</date><risdate>2019</risdate><volume>81</volume><spage>82</spage><epage>91</epage><pages>82-91</pages><issn>0097-8493</issn><eissn>1873-7684</eissn><abstract>•A method for extracting short descriptors from lengthy descriptors is developed.•The dimension reduction results are strengthened by an attraction/repulsion model.•A deep residual network is trained for generating the short descriptors.•The short descriptors improve the retrieval speed greatly. [Display omitted] The state-of-the-art shape descriptors are usually lengthy for gaining high retrieval precision. With the rapidly growing number of 3-dimensional models, the retrieval speed becomes a prominent problem in shape retrieval. In this paper, by exploiting the capabilities of the dimensionality reduction methods and the deep convolutional residual network (ResNet), we developed a method for extracting short shape descriptors (with just 2 real numbers, named 2-descriptors) from lengthy descriptors, while keeping or even improving the retrieval precision of the original lengthy descriptors. Specifically, an attraction and repulsion model is devised to strengthen the direct dimensionality reduction results. In this way, the dimensionality reduction results turn into desirable labels for the ResNet. Moreover, to extract the 2-descriptors using ResNet, we transformed it as a classification problem. For this purpose, the range of each component of the dimensionality reduction results (including two components in total) is uniformly divided into n intervals corresponding to n classes. Experiments on 3D shape retrieval show that our method not only accelerates the retrieval speed greatly but also improves the retrieval precisions of the original shape descriptors.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cag.2019.04.002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9337-9624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0097-8493
ispartof Computers & graphics, 2019-06, Vol.81, p.82-91
issn 0097-8493
1873-7684
language eng
recordid cdi_proquest_journals_2253862243
source Elsevier
subjects Deep learning
Dimensionality reduction
Real numbers
Reduction
ResNet
Retrieval
Shape descriptor
Shape recognition
Shape retrieval
Three dimensional models
title A dimensional reduction guiding deep learning architecture for 3D shape retrieval
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dimensional%20reduction%20guiding%20deep%20learning%20architecture%20for%203D%20shape%20retrieval&rft.jtitle=Computers%20&%20graphics&rft.au=Wang,%20Zihao&rft.date=2019-06&rft.volume=81&rft.spage=82&rft.epage=91&rft.pages=82-91&rft.issn=0097-8493&rft.eissn=1873-7684&rft_id=info:doi/10.1016/j.cag.2019.04.002&rft_dat=%3Cproquest_cross%3E2253862243%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-573eab7171cb04ac919da9b2b5aad7ab558477e9d4df2adf98a776d584ad3b0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253862243&rft_id=info:pmid/&rfr_iscdi=true