Loading…

Knot spectrum of turbulence

Streamlines, vortex lines and magnetic flux tubes in turbulent fluids and plasmas display a great amount of coiling, twisting and linking, raising the question as to whether their topological complexity (continually created and destroyed by reconnections) can be quantified. In superfluid helium, the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-07
Main Authors: Cooper, R G, Mesgarnezhad, M, Baggaley, A W, Barenghi, C F
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cooper, R G
Mesgarnezhad, M
Baggaley, A W
Barenghi, C F
description Streamlines, vortex lines and magnetic flux tubes in turbulent fluids and plasmas display a great amount of coiling, twisting and linking, raising the question as to whether their topological complexity (continually created and destroyed by reconnections) can be quantified. In superfluid helium, the discrete (quantized) nature of vorticity can be exploited to associate to each vortex loop a knot invariant called the Alexander polynomial whose degree characterizes the topology of that vortex loop. By numerically simulating the dynamics of a tangle of quantum vortex lines, we find that this quantum turbulence always contains vortex knots of very large degree which keep forming, vanishing and reforming, creating a distribution of topologies which we quantify in terms of a knot spectrum and its scaling law. We also find results analogous to those in the wider literature, demonstrating that the knotting probability of the vortex tangle grows with the vortex length, as for macromolecules, and saturates above a characteristic length, as found for tumbled strings.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2254216515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254216515</sourcerecordid><originalsourceid>FETCH-proquest_journals_22542165153</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9s7LL1EoLkhNLikqzVXIT1MoKS1KKs1JzUtO5WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMjUxMjQzNTQ1Nj4lQBAArNK18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254216515</pqid></control><display><type>article</type><title>Knot spectrum of turbulence</title><source>ProQuest - Publicly Available Content Database</source><creator>Cooper, R G ; Mesgarnezhad, M ; Baggaley, A W ; Barenghi, C F</creator><creatorcontrib>Cooper, R G ; Mesgarnezhad, M ; Baggaley, A W ; Barenghi, C F</creatorcontrib><description>Streamlines, vortex lines and magnetic flux tubes in turbulent fluids and plasmas display a great amount of coiling, twisting and linking, raising the question as to whether their topological complexity (continually created and destroyed by reconnections) can be quantified. In superfluid helium, the discrete (quantized) nature of vorticity can be exploited to associate to each vortex loop a knot invariant called the Alexander polynomial whose degree characterizes the topology of that vortex loop. By numerically simulating the dynamics of a tangle of quantum vortex lines, we find that this quantum turbulence always contains vortex knots of very large degree which keep forming, vanishing and reforming, creating a distribution of topologies which we quantify in terms of a knot spectrum and its scaling law. We also find results analogous to those in the wider literature, demonstrating that the knotting probability of the vortex tangle grows with the vortex length, as for macromolecules, and saturates above a characteristic length, as found for tumbled strings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coiling ; Computational fluid dynamics ; Computer simulation ; Fluid flow ; Fluids ; Helium ; Knots ; Macromolecules ; Magnetic flux ; Plasmas ; Polynomials ; Quantum turbulence ; Reforming ; Scaling laws ; Superfluidity ; Topology ; Tubes ; Twisting ; Vortices ; Vorticity</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2254216515?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cooper, R G</creatorcontrib><creatorcontrib>Mesgarnezhad, M</creatorcontrib><creatorcontrib>Baggaley, A W</creatorcontrib><creatorcontrib>Barenghi, C F</creatorcontrib><title>Knot spectrum of turbulence</title><title>arXiv.org</title><description>Streamlines, vortex lines and magnetic flux tubes in turbulent fluids and plasmas display a great amount of coiling, twisting and linking, raising the question as to whether their topological complexity (continually created and destroyed by reconnections) can be quantified. In superfluid helium, the discrete (quantized) nature of vorticity can be exploited to associate to each vortex loop a knot invariant called the Alexander polynomial whose degree characterizes the topology of that vortex loop. By numerically simulating the dynamics of a tangle of quantum vortex lines, we find that this quantum turbulence always contains vortex knots of very large degree which keep forming, vanishing and reforming, creating a distribution of topologies which we quantify in terms of a knot spectrum and its scaling law. We also find results analogous to those in the wider literature, demonstrating that the knotting probability of the vortex tangle grows with the vortex length, as for macromolecules, and saturates above a characteristic length, as found for tumbled strings.</description><subject>Coiling</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Helium</subject><subject>Knots</subject><subject>Macromolecules</subject><subject>Magnetic flux</subject><subject>Plasmas</subject><subject>Polynomials</subject><subject>Quantum turbulence</subject><subject>Reforming</subject><subject>Scaling laws</subject><subject>Superfluidity</subject><subject>Topology</subject><subject>Tubes</subject><subject>Twisting</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9s7LL1EoLkhNLikqzVXIT1MoKS1KKs1JzUtO5WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMjUxMjQzNTQ1Nj4lQBAArNK18</recordid><startdate>20190708</startdate><enddate>20190708</enddate><creator>Cooper, R G</creator><creator>Mesgarnezhad, M</creator><creator>Baggaley, A W</creator><creator>Barenghi, C F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190708</creationdate><title>Knot spectrum of turbulence</title><author>Cooper, R G ; Mesgarnezhad, M ; Baggaley, A W ; Barenghi, C F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22542165153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coiling</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Helium</topic><topic>Knots</topic><topic>Macromolecules</topic><topic>Magnetic flux</topic><topic>Plasmas</topic><topic>Polynomials</topic><topic>Quantum turbulence</topic><topic>Reforming</topic><topic>Scaling laws</topic><topic>Superfluidity</topic><topic>Topology</topic><topic>Tubes</topic><topic>Twisting</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>online_resources</toplevel><creatorcontrib>Cooper, R G</creatorcontrib><creatorcontrib>Mesgarnezhad, M</creatorcontrib><creatorcontrib>Baggaley, A W</creatorcontrib><creatorcontrib>Barenghi, C F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, R G</au><au>Mesgarnezhad, M</au><au>Baggaley, A W</au><au>Barenghi, C F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Knot spectrum of turbulence</atitle><jtitle>arXiv.org</jtitle><date>2019-07-08</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Streamlines, vortex lines and magnetic flux tubes in turbulent fluids and plasmas display a great amount of coiling, twisting and linking, raising the question as to whether their topological complexity (continually created and destroyed by reconnections) can be quantified. In superfluid helium, the discrete (quantized) nature of vorticity can be exploited to associate to each vortex loop a knot invariant called the Alexander polynomial whose degree characterizes the topology of that vortex loop. By numerically simulating the dynamics of a tangle of quantum vortex lines, we find that this quantum turbulence always contains vortex knots of very large degree which keep forming, vanishing and reforming, creating a distribution of topologies which we quantify in terms of a knot spectrum and its scaling law. We also find results analogous to those in the wider literature, demonstrating that the knotting probability of the vortex tangle grows with the vortex length, as for macromolecules, and saturates above a characteristic length, as found for tumbled strings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2254216515
source ProQuest - Publicly Available Content Database
subjects Coiling
Computational fluid dynamics
Computer simulation
Fluid flow
Fluids
Helium
Knots
Macromolecules
Magnetic flux
Plasmas
Polynomials
Quantum turbulence
Reforming
Scaling laws
Superfluidity
Topology
Tubes
Twisting
Vortices
Vorticity
title Knot spectrum of turbulence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Knot%20spectrum%20of%20turbulence&rft.jtitle=arXiv.org&rft.au=Cooper,%20R%20G&rft.date=2019-07-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2254216515%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22542165153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2254216515&rft_id=info:pmid/&rfr_iscdi=true