Loading…

Electronic coarse graining: Predictive atomistic modeling of condensed matter

Atoms and molecules adapt to their environment through a rich hierarchy of electronic responses. These include dipolar many-body polarization contributions arising in the classical limit, many-body polarization beyond dipole order, as well as pair and many-body dispersion interactions and cross inte...

Full description

Saved in:
Bibliographic Details
Published in:Reviews of modern physics 2019-05, Vol.91 (2), p.025003, Article 025003
Main Authors: Cipcigan, F. S., Crain, J., Sokhan, V. P., Martyna, G. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-5c295192bca8c2dc68380782fe6c3b3155e0c650dda3ad89611b5c1aefd16b0a3
cites cdi_FETCH-LOGICAL-c330t-5c295192bca8c2dc68380782fe6c3b3155e0c650dda3ad89611b5c1aefd16b0a3
container_end_page
container_issue 2
container_start_page 025003
container_title Reviews of modern physics
container_volume 91
creator Cipcigan, F. S.
Crain, J.
Sokhan, V. P.
Martyna, G. J.
description Atoms and molecules adapt to their environment through a rich hierarchy of electronic responses. These include dipolar many-body polarization contributions arising in the classical limit, many-body polarization beyond dipole order, as well as pair and many-body dispersion interactions and cross interactions at all orders arising from multipolar quantum fluctuations. Such fundamental phenomena give rise to emergent behavior across the physical and life sciences. However, their incorporation in simulations of large complex systems faces significant challenges as these are intrinsically many-body phenomena. Here the impetus for and development of a new class of molecular model employing embedded quantum Drude oscillators (QDO) as a coarse-grained but complete representation of electronic responses at long range within Gaussian statistics is given. The resulting level of completeness in physical description enables isolated molecule properties to define model parameters, thereby eliminating fitting to condensed phase data. This provides a physical and intuitive basis for predictive, next-generation simulation wherein all long-range diagrams emerge naturally from the model permitting the study of complex systems in novel environments. The model is derived from a many-body Hamiltonian and would afford no advantage without an O(N) scaling, strong coupling solution to avoid artificial truncation from perturbation theory and associated multipolar expansions which is possible due to the model's Gaussian structure. A scalar field theory and path integral form of the QDO Hamiltonian cast in such a way as to generate a strong coupling solution to the coarse-grained electronic structure are presented. Forces can be generated "on the fly" using modern adiabatic molecular dynamics methods with linear compuational complexity. Thus, the approach is applicable to large condensed phase systems at finite temperature and pressure. Example applications and future perspectives are presented for key physical systems such as the phase diagram of water from ice to the supercritical regime.
doi_str_mv 10.1103/RevModPhys.91.025003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2254497738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254497738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-5c295192bca8c2dc68380782fe6c3b3155e0c650dda3ad89611b5c1aefd16b0a3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKv_wMOC513zsckm3qTUD2ixiJ5DNpmtW7qbmqSF_nsjFTwNM-8zM_AgdEtwRQhm9-9wWHq3-jrGSpEKU44xO0MTwpkqccPFOZrkSV0KKcgluopxg3OPeTNBy_kWbAp-7G1hvQkRinUw_diP64diFcD1NvUHKEzyQx9TpgbvYJvjwnd5Y3QwRnDFYFKCcI0uOrONcPNXp-jzaf4xeykXb8-vs8dFaRnDqeSWKk4Uba2RljorJJO4kbQDYVnLCOeAreDYOcOMk0oQ0nJLDHSOiBYbNkV3p7u74L_3EJPe-H0Y80tNKa9r1TRMZqo-UTb4GAN0ehf6wYSjJlj_itP_4rQi-iSO_QB3_mSh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254497738</pqid></control><display><type>article</type><title>Electronic coarse graining: Predictive atomistic modeling of condensed matter</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Cipcigan, F. S. ; Crain, J. ; Sokhan, V. P. ; Martyna, G. J.</creator><creatorcontrib>Cipcigan, F. S. ; Crain, J. ; Sokhan, V. P. ; Martyna, G. J.</creatorcontrib><description>Atoms and molecules adapt to their environment through a rich hierarchy of electronic responses. These include dipolar many-body polarization contributions arising in the classical limit, many-body polarization beyond dipole order, as well as pair and many-body dispersion interactions and cross interactions at all orders arising from multipolar quantum fluctuations. Such fundamental phenomena give rise to emergent behavior across the physical and life sciences. However, their incorporation in simulations of large complex systems faces significant challenges as these are intrinsically many-body phenomena. Here the impetus for and development of a new class of molecular model employing embedded quantum Drude oscillators (QDO) as a coarse-grained but complete representation of electronic responses at long range within Gaussian statistics is given. The resulting level of completeness in physical description enables isolated molecule properties to define model parameters, thereby eliminating fitting to condensed phase data. This provides a physical and intuitive basis for predictive, next-generation simulation wherein all long-range diagrams emerge naturally from the model permitting the study of complex systems in novel environments. The model is derived from a many-body Hamiltonian and would afford no advantage without an O(N) scaling, strong coupling solution to avoid artificial truncation from perturbation theory and associated multipolar expansions which is possible due to the model's Gaussian structure. A scalar field theory and path integral form of the QDO Hamiltonian cast in such a way as to generate a strong coupling solution to the coarse-grained electronic structure are presented. Forces can be generated "on the fly" using modern adiabatic molecular dynamics methods with linear compuational complexity. Thus, the approach is applicable to large condensed phase systems at finite temperature and pressure. Example applications and future perspectives are presented for key physical systems such as the phase diagram of water from ice to the supercritical regime.</description><identifier>ISSN: 0034-6861</identifier><identifier>EISSN: 1539-0756</identifier><identifier>DOI: 10.1103/RevModPhys.91.025003</identifier><language>eng</language><publisher>College Park: American Institute of Physics</publisher><subject>Complex systems ; Complexity ; Computer simulation ; Condensed matter physics ; Coupling (molecular) ; Dipoles ; Electronic structure ; Field theory ; Granulation ; Molecular dynamics ; Oscillators ; Perturbation theory ; Phase diagrams ; Polarization ; Quantum phenomena</subject><ispartof>Reviews of modern physics, 2019-05, Vol.91 (2), p.025003, Article 025003</ispartof><rights>Copyright American Institute of Physics Apr-Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-5c295192bca8c2dc68380782fe6c3b3155e0c650dda3ad89611b5c1aefd16b0a3</citedby><cites>FETCH-LOGICAL-c330t-5c295192bca8c2dc68380782fe6c3b3155e0c650dda3ad89611b5c1aefd16b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Cipcigan, F. S.</creatorcontrib><creatorcontrib>Crain, J.</creatorcontrib><creatorcontrib>Sokhan, V. P.</creatorcontrib><creatorcontrib>Martyna, G. J.</creatorcontrib><title>Electronic coarse graining: Predictive atomistic modeling of condensed matter</title><title>Reviews of modern physics</title><description>Atoms and molecules adapt to their environment through a rich hierarchy of electronic responses. These include dipolar many-body polarization contributions arising in the classical limit, many-body polarization beyond dipole order, as well as pair and many-body dispersion interactions and cross interactions at all orders arising from multipolar quantum fluctuations. Such fundamental phenomena give rise to emergent behavior across the physical and life sciences. However, their incorporation in simulations of large complex systems faces significant challenges as these are intrinsically many-body phenomena. Here the impetus for and development of a new class of molecular model employing embedded quantum Drude oscillators (QDO) as a coarse-grained but complete representation of electronic responses at long range within Gaussian statistics is given. The resulting level of completeness in physical description enables isolated molecule properties to define model parameters, thereby eliminating fitting to condensed phase data. This provides a physical and intuitive basis for predictive, next-generation simulation wherein all long-range diagrams emerge naturally from the model permitting the study of complex systems in novel environments. The model is derived from a many-body Hamiltonian and would afford no advantage without an O(N) scaling, strong coupling solution to avoid artificial truncation from perturbation theory and associated multipolar expansions which is possible due to the model's Gaussian structure. A scalar field theory and path integral form of the QDO Hamiltonian cast in such a way as to generate a strong coupling solution to the coarse-grained electronic structure are presented. Forces can be generated "on the fly" using modern adiabatic molecular dynamics methods with linear compuational complexity. Thus, the approach is applicable to large condensed phase systems at finite temperature and pressure. Example applications and future perspectives are presented for key physical systems such as the phase diagram of water from ice to the supercritical regime.</description><subject>Complex systems</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Condensed matter physics</subject><subject>Coupling (molecular)</subject><subject>Dipoles</subject><subject>Electronic structure</subject><subject>Field theory</subject><subject>Granulation</subject><subject>Molecular dynamics</subject><subject>Oscillators</subject><subject>Perturbation theory</subject><subject>Phase diagrams</subject><subject>Polarization</subject><subject>Quantum phenomena</subject><issn>0034-6861</issn><issn>1539-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKv_wMOC513zsckm3qTUD2ixiJ5DNpmtW7qbmqSF_nsjFTwNM-8zM_AgdEtwRQhm9-9wWHq3-jrGSpEKU44xO0MTwpkqccPFOZrkSV0KKcgluopxg3OPeTNBy_kWbAp-7G1hvQkRinUw_diP64diFcD1NvUHKEzyQx9TpgbvYJvjwnd5Y3QwRnDFYFKCcI0uOrONcPNXp-jzaf4xeykXb8-vs8dFaRnDqeSWKk4Uba2RljorJJO4kbQDYVnLCOeAreDYOcOMk0oQ0nJLDHSOiBYbNkV3p7u74L_3EJPe-H0Y80tNKa9r1TRMZqo-UTb4GAN0ehf6wYSjJlj_itP_4rQi-iSO_QB3_mSh</recordid><startdate>20190510</startdate><enddate>20190510</enddate><creator>Cipcigan, F. S.</creator><creator>Crain, J.</creator><creator>Sokhan, V. P.</creator><creator>Martyna, G. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190510</creationdate><title>Electronic coarse graining: Predictive atomistic modeling of condensed matter</title><author>Cipcigan, F. S. ; Crain, J. ; Sokhan, V. P. ; Martyna, G. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-5c295192bca8c2dc68380782fe6c3b3155e0c650dda3ad89611b5c1aefd16b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Complex systems</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Condensed matter physics</topic><topic>Coupling (molecular)</topic><topic>Dipoles</topic><topic>Electronic structure</topic><topic>Field theory</topic><topic>Granulation</topic><topic>Molecular dynamics</topic><topic>Oscillators</topic><topic>Perturbation theory</topic><topic>Phase diagrams</topic><topic>Polarization</topic><topic>Quantum phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cipcigan, F. S.</creatorcontrib><creatorcontrib>Crain, J.</creatorcontrib><creatorcontrib>Sokhan, V. P.</creatorcontrib><creatorcontrib>Martyna, G. J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Reviews of modern physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cipcigan, F. S.</au><au>Crain, J.</au><au>Sokhan, V. P.</au><au>Martyna, G. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic coarse graining: Predictive atomistic modeling of condensed matter</atitle><jtitle>Reviews of modern physics</jtitle><date>2019-05-10</date><risdate>2019</risdate><volume>91</volume><issue>2</issue><spage>025003</spage><pages>025003-</pages><artnum>025003</artnum><issn>0034-6861</issn><eissn>1539-0756</eissn><abstract>Atoms and molecules adapt to their environment through a rich hierarchy of electronic responses. These include dipolar many-body polarization contributions arising in the classical limit, many-body polarization beyond dipole order, as well as pair and many-body dispersion interactions and cross interactions at all orders arising from multipolar quantum fluctuations. Such fundamental phenomena give rise to emergent behavior across the physical and life sciences. However, their incorporation in simulations of large complex systems faces significant challenges as these are intrinsically many-body phenomena. Here the impetus for and development of a new class of molecular model employing embedded quantum Drude oscillators (QDO) as a coarse-grained but complete representation of electronic responses at long range within Gaussian statistics is given. The resulting level of completeness in physical description enables isolated molecule properties to define model parameters, thereby eliminating fitting to condensed phase data. This provides a physical and intuitive basis for predictive, next-generation simulation wherein all long-range diagrams emerge naturally from the model permitting the study of complex systems in novel environments. The model is derived from a many-body Hamiltonian and would afford no advantage without an O(N) scaling, strong coupling solution to avoid artificial truncation from perturbation theory and associated multipolar expansions which is possible due to the model's Gaussian structure. A scalar field theory and path integral form of the QDO Hamiltonian cast in such a way as to generate a strong coupling solution to the coarse-grained electronic structure are presented. Forces can be generated "on the fly" using modern adiabatic molecular dynamics methods with linear compuational complexity. Thus, the approach is applicable to large condensed phase systems at finite temperature and pressure. Example applications and future perspectives are presented for key physical systems such as the phase diagram of water from ice to the supercritical regime.</abstract><cop>College Park</cop><pub>American Institute of Physics</pub><doi>10.1103/RevModPhys.91.025003</doi></addata></record>
fulltext fulltext
identifier ISSN: 0034-6861
ispartof Reviews of modern physics, 2019-05, Vol.91 (2), p.025003, Article 025003
issn 0034-6861
1539-0756
language eng
recordid cdi_proquest_journals_2254497738
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Complex systems
Complexity
Computer simulation
Condensed matter physics
Coupling (molecular)
Dipoles
Electronic structure
Field theory
Granulation
Molecular dynamics
Oscillators
Perturbation theory
Phase diagrams
Polarization
Quantum phenomena
title Electronic coarse graining: Predictive atomistic modeling of condensed matter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20coarse%20graining:%20Predictive%20atomistic%20modeling%20of%20condensed%20matter&rft.jtitle=Reviews%20of%20modern%20physics&rft.au=Cipcigan,%20F.%E2%80%89S.&rft.date=2019-05-10&rft.volume=91&rft.issue=2&rft.spage=025003&rft.pages=025003-&rft.artnum=025003&rft.issn=0034-6861&rft.eissn=1539-0756&rft_id=info:doi/10.1103/RevModPhys.91.025003&rft_dat=%3Cproquest_cross%3E2254497738%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-5c295192bca8c2dc68380782fe6c3b3155e0c650dda3ad89611b5c1aefd16b0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2254497738&rft_id=info:pmid/&rfr_iscdi=true