Loading…

Maize seedlings produced from dry seeds exposed to liquid nitrogen display altered levels of shikimate pathway compounds

In light of climate change and risks of food insecurity, it is becoming increasingly important to preserve plant germplasm in genebanks. Storage of seeds, particularly via cryopreservation, is one of the most proficient methods for ex situ plant germplasm conservation. Whilst seed cryo-banking can h...

Full description

Saved in:
Bibliographic Details
Published in:In vitro cellular & developmental biology. Plant 2019-10, Vol.55 (5), p.503-509
Main Authors: Pereira, Rosmery, Arguedas, Melissa, Martínez, Julia, Hernández, Lázaro, Zevallos, Byron Enrique, Martínez-Montero, Marcos Edel, Yabor, Lourdes, Sershen, Lorenzo, José Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In light of climate change and risks of food insecurity, it is becoming increasingly important to preserve plant germplasm in genebanks. Storage of seeds, particularly via cryopreservation, is one of the most proficient methods for ex situ plant germplasm conservation. Whilst seed cryo-banking can have little, to no, or even beneficial effects on subsequent seedling vigor in some species, it can lead to a number of plant abnormalities (morphological and physiological). This study investigated the effects of maize seed cryopreservation on seedling growth (until 14 d) and levels of selected amino acids produced in the shikimate pathway, a major link between primary and secondary metabolism. Seed cryopreservation reduced FW in recovered seedlings, reduced caffeic acid (2.5-fold decrease), and increased levels of all other shikimate pathway-related compounds assessed: phenylalanine (2.9-fold increase), tyrosine (2.6-fold increase), and shikimic (2.1-fold increase) and protocathecuic (3.1-fold increase) acids in cotyledons. Our results suggest that maize seed cryopreservation results in seedlings that exhibit signs of an 'overly' efficient and caffeic acid-deficient shikimate pathway, possibly related to their reduced growth during a highly vulnerable growth stage. However, these metabolic abnormalities manifested most severely in the maternal (cotyledonary), as opposed to vegetative (roots, stems, and leaves), tissues and hence are likely to disappear when the seedlings shed the cotyledons and become completely autotrophip.
ISSN:1054-5476
1475-2689
DOI:10.1007/s11627-019-09995-1