Loading…
Efficient Cloth Simulation using Miniature Cloth and Upscaling Deep Neural Networks
Cloth simulation requires a fast and stable method for interactively and realistically visualizing fabric materials using computer graphics. We propose an efficient cloth simulation method using miniature cloth simulation and upscaling Deep Neural Networks (DNN). The upscaling DNNs generate the targ...
Saved in:
Published in: | arXiv.org 2019-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lee, Tae Min Young Jin Oh Lee, In-Kwon |
description | Cloth simulation requires a fast and stable method for interactively and realistically visualizing fabric materials using computer graphics. We propose an efficient cloth simulation method using miniature cloth simulation and upscaling Deep Neural Networks (DNN). The upscaling DNNs generate the target cloth simulation from the results of physically-based simulations of a miniature cloth that has similar physical properties to those of the target cloth. We have verified the utility of the proposed method through experiments, and the results demonstrate that it is possible to generate fast and stable cloth simulations under various conditions. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2254939400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254939400</sourcerecordid><originalsourceid>FETCH-proquest_journals_22549394003</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivEMTZ5LagsqMGBdd0Jk0cNGLtcX-xNcXEx7A6QzfmZGIC7FJ9innCxI71zPG-HbHs0xEpCq7DhsE7WmhjH_QCl9BSY9G0-BQ3-kZNUofLEyD1C29Da6R6qcHgIFeIFipxviPsU-3IvNOKgfx1CVZH8trcUoGa94BnK97E6weqeY8S3ORp4yJ_64vK80_-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254939400</pqid></control><display><type>article</type><title>Efficient Cloth Simulation using Miniature Cloth and Upscaling Deep Neural Networks</title><source>Publicly Available Content (ProQuest)</source><creator>Lee, Tae Min ; Young Jin Oh ; Lee, In-Kwon</creator><creatorcontrib>Lee, Tae Min ; Young Jin Oh ; Lee, In-Kwon</creatorcontrib><description>Cloth simulation requires a fast and stable method for interactively and realistically visualizing fabric materials using computer graphics. We propose an efficient cloth simulation method using miniature cloth simulation and upscaling Deep Neural Networks (DNN). The upscaling DNNs generate the target cloth simulation from the results of physically-based simulations of a miniature cloth that has similar physical properties to those of the target cloth. We have verified the utility of the proposed method through experiments, and the results demonstrate that it is possible to generate fast and stable cloth simulations under various conditions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cloth ; Computer graphics ; Computer simulation ; Neural networks ; Physical properties ; Simulation</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2254939400?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Lee, Tae Min</creatorcontrib><creatorcontrib>Young Jin Oh</creatorcontrib><creatorcontrib>Lee, In-Kwon</creatorcontrib><title>Efficient Cloth Simulation using Miniature Cloth and Upscaling Deep Neural Networks</title><title>arXiv.org</title><description>Cloth simulation requires a fast and stable method for interactively and realistically visualizing fabric materials using computer graphics. We propose an efficient cloth simulation method using miniature cloth simulation and upscaling Deep Neural Networks (DNN). The upscaling DNNs generate the target cloth simulation from the results of physically-based simulations of a miniature cloth that has similar physical properties to those of the target cloth. We have verified the utility of the proposed method through experiments, and the results demonstrate that it is possible to generate fast and stable cloth simulations under various conditions.</description><subject>Cloth</subject><subject>Computer graphics</subject><subject>Computer simulation</subject><subject>Neural networks</subject><subject>Physical properties</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0OgjAUQOHGxESivEMTZ5LagsqMGBdd0Jk0cNGLtcX-xNcXEx7A6QzfmZGIC7FJ9innCxI71zPG-HbHs0xEpCq7DhsE7WmhjH_QCl9BSY9G0-BQ3-kZNUofLEyD1C29Da6R6qcHgIFeIFipxviPsU-3IvNOKgfx1CVZH8trcUoGa94BnK97E6weqeY8S3ORp4yJ_64vK80_-Q</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>Lee, Tae Min</creator><creator>Young Jin Oh</creator><creator>Lee, In-Kwon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190709</creationdate><title>Efficient Cloth Simulation using Miniature Cloth and Upscaling Deep Neural Networks</title><author>Lee, Tae Min ; Young Jin Oh ; Lee, In-Kwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22549394003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cloth</topic><topic>Computer graphics</topic><topic>Computer simulation</topic><topic>Neural networks</topic><topic>Physical properties</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Tae Min</creatorcontrib><creatorcontrib>Young Jin Oh</creatorcontrib><creatorcontrib>Lee, In-Kwon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Tae Min</au><au>Young Jin Oh</au><au>Lee, In-Kwon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Efficient Cloth Simulation using Miniature Cloth and Upscaling Deep Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2019-07-09</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Cloth simulation requires a fast and stable method for interactively and realistically visualizing fabric materials using computer graphics. We propose an efficient cloth simulation method using miniature cloth simulation and upscaling Deep Neural Networks (DNN). The upscaling DNNs generate the target cloth simulation from the results of physically-based simulations of a miniature cloth that has similar physical properties to those of the target cloth. We have verified the utility of the proposed method through experiments, and the results demonstrate that it is possible to generate fast and stable cloth simulations under various conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2254939400 |
source | Publicly Available Content (ProQuest) |
subjects | Cloth Computer graphics Computer simulation Neural networks Physical properties Simulation |
title | Efficient Cloth Simulation using Miniature Cloth and Upscaling Deep Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Efficient%20Cloth%20Simulation%20using%20Miniature%20Cloth%20and%20Upscaling%20Deep%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Lee,%20Tae%20Min&rft.date=2019-07-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2254939400%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22549394003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2254939400&rft_id=info:pmid/&rfr_iscdi=true |