Loading…
Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance
Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spect...
Saved in:
Published in: | Journal of materials science 2019-09, Vol.54 (18), p.11827-11840 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3 |
container_end_page | 11840 |
container_issue | 18 |
container_start_page | 11827 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Zuo, Yuxin Yao, Zhengjun Lin, Haiyan Zhou, Jintang Guo, Xinlu Cai, Haishuo |
description | Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning and transmission electron microscopy, and vector network analyzer. The results indicated that CIP@EP composites with 9–254 nm EP shell thickness were successfully prepared through an efficient in situ polymerization method. The particle diameter of core CIP particles was 0.49–4.24 µm. The microwave absorption properties of the microspheres were then experimentally measured, and the CIP@EP composites exhibited a maximum reflection loss value of − 66.2 dB at 7.1 GHz at 2.0 mm absorber thickness. The effective absorbing bandwidth below − 10 dB was 8.0 GHz (from 10.0 to 18.0 GHz). The presence of the EP shell not only enhanced the microwave absorption performance of CIP@EP composites but also improved the overall chemical stability of CIP particles. The as-prepared CIP@EP composites may be a promising candidate for electromagnetic wave absorption applications, and the core–shell structure design can be extended to other microwave absorption materials. |
doi_str_mv | 10.1007/s10853-019-03770-8 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2255498840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590911228</galeid><sourcerecordid>A590911228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3</originalsourceid><addsrcrecordid>eNp9kc9qFTEUh4MoeK2-gKuAKxdTTzKTTLKzFP8UCoLVdchkTu5MmZuMyVzbKwi-g2_ok5jbEaSbkkUg-b5zkvMj5CWDUwbQvskMlKgrYLqCum2hUo_Ihom2rhoF9WOyAeC84o1kT8mznK8BQLScbcjPq0NYBsxjpjb01A02WbdgGn_YZYyBRk-dTV0Mh4mOKYa3OMfbA3Ux4Z9fv_OA00R3o0sxzwMmzNTHRDEMNjjs15sb-x2p7XJM813JGVOBdkfiOXni7ZTxxb_9hHx9_-7L-cfq8tOHi_Ozy8o1HJaq8wwabZte8tqDRaaBSSU1cmHBO3RdLbrOCc6dBK_rTjrvJPO2YUL1qqtPyKu17pzitz3mxVzHfQqlpeFciEYr1cDDVCO1lqBkoU5XamsnNGPwcSkjK6vH8t0Y0I_l_Exo0Ixxrorw-p5QmAVvl63d52wurj7fZ_nKHieaE3ozp3Fn08EwMMekzZq0KUmbu6TNUapXKRc4bDH9f_cD1l_ovK5G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255498840</pqid></control><display><type>article</type><title>Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance</title><source>Springer Nature</source><creator>Zuo, Yuxin ; Yao, Zhengjun ; Lin, Haiyan ; Zhou, Jintang ; Guo, Xinlu ; Cai, Haishuo</creator><creatorcontrib>Zuo, Yuxin ; Yao, Zhengjun ; Lin, Haiyan ; Zhou, Jintang ; Guo, Xinlu ; Cai, Haishuo</creatorcontrib><description>Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning and transmission electron microscopy, and vector network analyzer. The results indicated that CIP@EP composites with 9–254 nm EP shell thickness were successfully prepared through an efficient in situ polymerization method. The particle diameter of core CIP particles was 0.49–4.24 µm. The microwave absorption properties of the microspheres were then experimentally measured, and the CIP@EP composites exhibited a maximum reflection loss value of − 66.2 dB at 7.1 GHz at 2.0 mm absorber thickness. The effective absorbing bandwidth below − 10 dB was 8.0 GHz (from 10.0 to 18.0 GHz). The presence of the EP shell not only enhanced the microwave absorption performance of CIP@EP composites but also improved the overall chemical stability of CIP particles. The as-prepared CIP@EP composites may be a promising candidate for electromagnetic wave absorption applications, and the core–shell structure design can be extended to other microwave absorption materials.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03770-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbonyl powders ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Core-shell structure ; Crystallography and Scattering Methods ; Diffraction ; Electric waves ; Electromagnetic radiation ; Electromagnetic waves ; Epoxy resins ; Fourier transforms ; Infrared spectroscopy ; Iron ; Materials Science ; Microspheres ; Microwave absorption ; Network analysers ; Organic chemistry ; Particle size ; Particulate composites ; Polymer matrix composites ; Polymer Sciences ; Polymerization ; Powders ; Scanning electron microscopy ; Shells ; Solid Mechanics ; Thickness ; Transmission electron microscopy ; X-ray diffraction ; X-rays</subject><ispartof>Journal of materials science, 2019-09, Vol.54 (18), p.11827-11840</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3</citedby><cites>FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3</cites><orcidid>0000-0002-2791-9688 ; 0000-0002-7485-2033 ; 0000-0003-4422-0470 ; 0000-0002-6466-1188 ; 0000-0003-1442-0869 ; 0000-0002-2430-6659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zuo, Yuxin</creatorcontrib><creatorcontrib>Yao, Zhengjun</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Zhou, Jintang</creatorcontrib><creatorcontrib>Guo, Xinlu</creatorcontrib><creatorcontrib>Cai, Haishuo</creatorcontrib><title>Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning and transmission electron microscopy, and vector network analyzer. The results indicated that CIP@EP composites with 9–254 nm EP shell thickness were successfully prepared through an efficient in situ polymerization method. The particle diameter of core CIP particles was 0.49–4.24 µm. The microwave absorption properties of the microspheres were then experimentally measured, and the CIP@EP composites exhibited a maximum reflection loss value of − 66.2 dB at 7.1 GHz at 2.0 mm absorber thickness. The effective absorbing bandwidth below − 10 dB was 8.0 GHz (from 10.0 to 18.0 GHz). The presence of the EP shell not only enhanced the microwave absorption performance of CIP@EP composites but also improved the overall chemical stability of CIP particles. The as-prepared CIP@EP composites may be a promising candidate for electromagnetic wave absorption applications, and the core–shell structure design can be extended to other microwave absorption materials.</description><subject>Carbonyl powders</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Core-shell structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffraction</subject><subject>Electric waves</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic waves</subject><subject>Epoxy resins</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Microspheres</subject><subject>Microwave absorption</subject><subject>Network analysers</subject><subject>Organic chemistry</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Powders</subject><subject>Scanning electron microscopy</subject><subject>Shells</subject><subject>Solid Mechanics</subject><subject>Thickness</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc9qFTEUh4MoeK2-gKuAKxdTTzKTTLKzFP8UCoLVdchkTu5MmZuMyVzbKwi-g2_ok5jbEaSbkkUg-b5zkvMj5CWDUwbQvskMlKgrYLqCum2hUo_Ihom2rhoF9WOyAeC84o1kT8mznK8BQLScbcjPq0NYBsxjpjb01A02WbdgGn_YZYyBRk-dTV0Mh4mOKYa3OMfbA3Ux4Z9fv_OA00R3o0sxzwMmzNTHRDEMNjjs15sb-x2p7XJM813JGVOBdkfiOXni7ZTxxb_9hHx9_-7L-cfq8tOHi_Ozy8o1HJaq8wwabZte8tqDRaaBSSU1cmHBO3RdLbrOCc6dBK_rTjrvJPO2YUL1qqtPyKu17pzitz3mxVzHfQqlpeFciEYr1cDDVCO1lqBkoU5XamsnNGPwcSkjK6vH8t0Y0I_l_Exo0Ixxrorw-p5QmAVvl63d52wurj7fZ_nKHieaE3ozp3Fn08EwMMekzZq0KUmbu6TNUapXKRc4bDH9f_cD1l_ovK5G</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zuo, Yuxin</creator><creator>Yao, Zhengjun</creator><creator>Lin, Haiyan</creator><creator>Zhou, Jintang</creator><creator>Guo, Xinlu</creator><creator>Cai, Haishuo</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2791-9688</orcidid><orcidid>https://orcid.org/0000-0002-7485-2033</orcidid><orcidid>https://orcid.org/0000-0003-4422-0470</orcidid><orcidid>https://orcid.org/0000-0002-6466-1188</orcidid><orcidid>https://orcid.org/0000-0003-1442-0869</orcidid><orcidid>https://orcid.org/0000-0002-2430-6659</orcidid></search><sort><creationdate>20190901</creationdate><title>Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance</title><author>Zuo, Yuxin ; Yao, Zhengjun ; Lin, Haiyan ; Zhou, Jintang ; Guo, Xinlu ; Cai, Haishuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbonyl powders</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Core-shell structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffraction</topic><topic>Electric waves</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic waves</topic><topic>Epoxy resins</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Microspheres</topic><topic>Microwave absorption</topic><topic>Network analysers</topic><topic>Organic chemistry</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Powders</topic><topic>Scanning electron microscopy</topic><topic>Shells</topic><topic>Solid Mechanics</topic><topic>Thickness</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Yuxin</creatorcontrib><creatorcontrib>Yao, Zhengjun</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Zhou, Jintang</creatorcontrib><creatorcontrib>Guo, Xinlu</creatorcontrib><creatorcontrib>Cai, Haishuo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Yuxin</au><au>Yao, Zhengjun</au><au>Lin, Haiyan</au><au>Zhou, Jintang</au><au>Guo, Xinlu</au><au>Cai, Haishuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>54</volume><issue>18</issue><spage>11827</spage><epage>11840</epage><pages>11827-11840</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning and transmission electron microscopy, and vector network analyzer. The results indicated that CIP@EP composites with 9–254 nm EP shell thickness were successfully prepared through an efficient in situ polymerization method. The particle diameter of core CIP particles was 0.49–4.24 µm. The microwave absorption properties of the microspheres were then experimentally measured, and the CIP@EP composites exhibited a maximum reflection loss value of − 66.2 dB at 7.1 GHz at 2.0 mm absorber thickness. The effective absorbing bandwidth below − 10 dB was 8.0 GHz (from 10.0 to 18.0 GHz). The presence of the EP shell not only enhanced the microwave absorption performance of CIP@EP composites but also improved the overall chemical stability of CIP particles. The as-prepared CIP@EP composites may be a promising candidate for electromagnetic wave absorption applications, and the core–shell structure design can be extended to other microwave absorption materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03770-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2791-9688</orcidid><orcidid>https://orcid.org/0000-0002-7485-2033</orcidid><orcidid>https://orcid.org/0000-0003-4422-0470</orcidid><orcidid>https://orcid.org/0000-0002-6466-1188</orcidid><orcidid>https://orcid.org/0000-0003-1442-0869</orcidid><orcidid>https://orcid.org/0000-0002-2430-6659</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-09, Vol.54 (18), p.11827-11840 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2255498840 |
source | Springer Nature |
subjects | Carbonyl powders Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Core-shell structure Crystallography and Scattering Methods Diffraction Electric waves Electromagnetic radiation Electromagnetic waves Epoxy resins Fourier transforms Infrared spectroscopy Iron Materials Science Microspheres Microwave absorption Network analysers Organic chemistry Particle size Particulate composites Polymer matrix composites Polymer Sciences Polymerization Powders Scanning electron microscopy Shells Solid Mechanics Thickness Transmission electron microscopy X-ray diffraction X-rays |
title | Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characterization%20of%20carbonyl%20iron@epoxy%20core%E2%80%93shell%20microspheres%20for%20enhanced%20microwave%20absorption%20performance&rft.jtitle=Journal%20of%20materials%20science&rft.au=Zuo,%20Yuxin&rft.date=2019-09-01&rft.volume=54&rft.issue=18&rft.spage=11827&rft.epage=11840&rft.pages=11827-11840&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03770-8&rft_dat=%3Cgale_proqu%3EA590911228%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2255498840&rft_id=info:pmid/&rft_galeid=A590911228&rfr_iscdi=true |