Loading…

Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance

Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spect...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2019-09, Vol.54 (18), p.11827-11840
Main Authors: Zuo, Yuxin, Yao, Zhengjun, Lin, Haiyan, Zhou, Jintang, Guo, Xinlu, Cai, Haishuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3
cites cdi_FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3
container_end_page 11840
container_issue 18
container_start_page 11827
container_title Journal of materials science
container_volume 54
creator Zuo, Yuxin
Yao, Zhengjun
Lin, Haiyan
Zhou, Jintang
Guo, Xinlu
Cai, Haishuo
description Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning and transmission electron microscopy, and vector network analyzer. The results indicated that CIP@EP composites with 9–254 nm EP shell thickness were successfully prepared through an efficient in situ polymerization method. The particle diameter of core CIP particles was 0.49–4.24 µm. The microwave absorption properties of the microspheres were then experimentally measured, and the CIP@EP composites exhibited a maximum reflection loss value of − 66.2 dB at 7.1 GHz at 2.0 mm absorber thickness. The effective absorbing bandwidth below − 10 dB was 8.0 GHz (from 10.0 to 18.0 GHz). The presence of the EP shell not only enhanced the microwave absorption performance of CIP@EP composites but also improved the overall chemical stability of CIP particles. The as-prepared CIP@EP composites may be a promising candidate for electromagnetic wave absorption applications, and the core–shell structure design can be extended to other microwave absorption materials.
doi_str_mv 10.1007/s10853-019-03770-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2255498840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590911228</galeid><sourcerecordid>A590911228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3</originalsourceid><addsrcrecordid>eNp9kc9qFTEUh4MoeK2-gKuAKxdTTzKTTLKzFP8UCoLVdchkTu5MmZuMyVzbKwi-g2_ok5jbEaSbkkUg-b5zkvMj5CWDUwbQvskMlKgrYLqCum2hUo_Ihom2rhoF9WOyAeC84o1kT8mznK8BQLScbcjPq0NYBsxjpjb01A02WbdgGn_YZYyBRk-dTV0Mh4mOKYa3OMfbA3Ux4Z9fv_OA00R3o0sxzwMmzNTHRDEMNjjs15sb-x2p7XJM813JGVOBdkfiOXni7ZTxxb_9hHx9_-7L-cfq8tOHi_Ozy8o1HJaq8wwabZte8tqDRaaBSSU1cmHBO3RdLbrOCc6dBK_rTjrvJPO2YUL1qqtPyKu17pzitz3mxVzHfQqlpeFciEYr1cDDVCO1lqBkoU5XamsnNGPwcSkjK6vH8t0Y0I_l_Exo0Ixxrorw-p5QmAVvl63d52wurj7fZ_nKHieaE3ozp3Fn08EwMMekzZq0KUmbu6TNUapXKRc4bDH9f_cD1l_ovK5G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255498840</pqid></control><display><type>article</type><title>Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance</title><source>Springer Nature</source><creator>Zuo, Yuxin ; Yao, Zhengjun ; Lin, Haiyan ; Zhou, Jintang ; Guo, Xinlu ; Cai, Haishuo</creator><creatorcontrib>Zuo, Yuxin ; Yao, Zhengjun ; Lin, Haiyan ; Zhou, Jintang ; Guo, Xinlu ; Cai, Haishuo</creatorcontrib><description>Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning and transmission electron microscopy, and vector network analyzer. The results indicated that CIP@EP composites with 9–254 nm EP shell thickness were successfully prepared through an efficient in situ polymerization method. The particle diameter of core CIP particles was 0.49–4.24 µm. The microwave absorption properties of the microspheres were then experimentally measured, and the CIP@EP composites exhibited a maximum reflection loss value of − 66.2 dB at 7.1 GHz at 2.0 mm absorber thickness. The effective absorbing bandwidth below − 10 dB was 8.0 GHz (from 10.0 to 18.0 GHz). The presence of the EP shell not only enhanced the microwave absorption performance of CIP@EP composites but also improved the overall chemical stability of CIP particles. The as-prepared CIP@EP composites may be a promising candidate for electromagnetic wave absorption applications, and the core–shell structure design can be extended to other microwave absorption materials.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03770-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbonyl powders ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Core-shell structure ; Crystallography and Scattering Methods ; Diffraction ; Electric waves ; Electromagnetic radiation ; Electromagnetic waves ; Epoxy resins ; Fourier transforms ; Infrared spectroscopy ; Iron ; Materials Science ; Microspheres ; Microwave absorption ; Network analysers ; Organic chemistry ; Particle size ; Particulate composites ; Polymer matrix composites ; Polymer Sciences ; Polymerization ; Powders ; Scanning electron microscopy ; Shells ; Solid Mechanics ; Thickness ; Transmission electron microscopy ; X-ray diffraction ; X-rays</subject><ispartof>Journal of materials science, 2019-09, Vol.54 (18), p.11827-11840</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3</citedby><cites>FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3</cites><orcidid>0000-0002-2791-9688 ; 0000-0002-7485-2033 ; 0000-0003-4422-0470 ; 0000-0002-6466-1188 ; 0000-0003-1442-0869 ; 0000-0002-2430-6659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zuo, Yuxin</creatorcontrib><creatorcontrib>Yao, Zhengjun</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Zhou, Jintang</creatorcontrib><creatorcontrib>Guo, Xinlu</creatorcontrib><creatorcontrib>Cai, Haishuo</creatorcontrib><title>Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning and transmission electron microscopy, and vector network analyzer. The results indicated that CIP@EP composites with 9–254 nm EP shell thickness were successfully prepared through an efficient in situ polymerization method. The particle diameter of core CIP particles was 0.49–4.24 µm. The microwave absorption properties of the microspheres were then experimentally measured, and the CIP@EP composites exhibited a maximum reflection loss value of − 66.2 dB at 7.1 GHz at 2.0 mm absorber thickness. The effective absorbing bandwidth below − 10 dB was 8.0 GHz (from 10.0 to 18.0 GHz). The presence of the EP shell not only enhanced the microwave absorption performance of CIP@EP composites but also improved the overall chemical stability of CIP particles. The as-prepared CIP@EP composites may be a promising candidate for electromagnetic wave absorption applications, and the core–shell structure design can be extended to other microwave absorption materials.</description><subject>Carbonyl powders</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Core-shell structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffraction</subject><subject>Electric waves</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic waves</subject><subject>Epoxy resins</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Microspheres</subject><subject>Microwave absorption</subject><subject>Network analysers</subject><subject>Organic chemistry</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Powders</subject><subject>Scanning electron microscopy</subject><subject>Shells</subject><subject>Solid Mechanics</subject><subject>Thickness</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc9qFTEUh4MoeK2-gKuAKxdTTzKTTLKzFP8UCoLVdchkTu5MmZuMyVzbKwi-g2_ok5jbEaSbkkUg-b5zkvMj5CWDUwbQvskMlKgrYLqCum2hUo_Ihom2rhoF9WOyAeC84o1kT8mznK8BQLScbcjPq0NYBsxjpjb01A02WbdgGn_YZYyBRk-dTV0Mh4mOKYa3OMfbA3Ux4Z9fv_OA00R3o0sxzwMmzNTHRDEMNjjs15sb-x2p7XJM813JGVOBdkfiOXni7ZTxxb_9hHx9_-7L-cfq8tOHi_Ozy8o1HJaq8wwabZte8tqDRaaBSSU1cmHBO3RdLbrOCc6dBK_rTjrvJPO2YUL1qqtPyKu17pzitz3mxVzHfQqlpeFciEYr1cDDVCO1lqBkoU5XamsnNGPwcSkjK6vH8t0Y0I_l_Exo0Ixxrorw-p5QmAVvl63d52wurj7fZ_nKHieaE3ozp3Fn08EwMMekzZq0KUmbu6TNUapXKRc4bDH9f_cD1l_ovK5G</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zuo, Yuxin</creator><creator>Yao, Zhengjun</creator><creator>Lin, Haiyan</creator><creator>Zhou, Jintang</creator><creator>Guo, Xinlu</creator><creator>Cai, Haishuo</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2791-9688</orcidid><orcidid>https://orcid.org/0000-0002-7485-2033</orcidid><orcidid>https://orcid.org/0000-0003-4422-0470</orcidid><orcidid>https://orcid.org/0000-0002-6466-1188</orcidid><orcidid>https://orcid.org/0000-0003-1442-0869</orcidid><orcidid>https://orcid.org/0000-0002-2430-6659</orcidid></search><sort><creationdate>20190901</creationdate><title>Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance</title><author>Zuo, Yuxin ; Yao, Zhengjun ; Lin, Haiyan ; Zhou, Jintang ; Guo, Xinlu ; Cai, Haishuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbonyl powders</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Core-shell structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffraction</topic><topic>Electric waves</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic waves</topic><topic>Epoxy resins</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Microspheres</topic><topic>Microwave absorption</topic><topic>Network analysers</topic><topic>Organic chemistry</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Powders</topic><topic>Scanning electron microscopy</topic><topic>Shells</topic><topic>Solid Mechanics</topic><topic>Thickness</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Yuxin</creatorcontrib><creatorcontrib>Yao, Zhengjun</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Zhou, Jintang</creatorcontrib><creatorcontrib>Guo, Xinlu</creatorcontrib><creatorcontrib>Cai, Haishuo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Yuxin</au><au>Yao, Zhengjun</au><au>Lin, Haiyan</au><au>Zhou, Jintang</au><au>Guo, Xinlu</au><au>Cai, Haishuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>54</volume><issue>18</issue><spage>11827</spage><epage>11840</epage><pages>11827-11840</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning and transmission electron microscopy, and vector network analyzer. The results indicated that CIP@EP composites with 9–254 nm EP shell thickness were successfully prepared through an efficient in situ polymerization method. The particle diameter of core CIP particles was 0.49–4.24 µm. The microwave absorption properties of the microspheres were then experimentally measured, and the CIP@EP composites exhibited a maximum reflection loss value of − 66.2 dB at 7.1 GHz at 2.0 mm absorber thickness. The effective absorbing bandwidth below − 10 dB was 8.0 GHz (from 10.0 to 18.0 GHz). The presence of the EP shell not only enhanced the microwave absorption performance of CIP@EP composites but also improved the overall chemical stability of CIP particles. The as-prepared CIP@EP composites may be a promising candidate for electromagnetic wave absorption applications, and the core–shell structure design can be extended to other microwave absorption materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03770-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2791-9688</orcidid><orcidid>https://orcid.org/0000-0002-7485-2033</orcidid><orcidid>https://orcid.org/0000-0003-4422-0470</orcidid><orcidid>https://orcid.org/0000-0002-6466-1188</orcidid><orcidid>https://orcid.org/0000-0003-1442-0869</orcidid><orcidid>https://orcid.org/0000-0002-2430-6659</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-09, Vol.54 (18), p.11827-11840
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2255498840
source Springer Nature
subjects Carbonyl powders
Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Core-shell structure
Crystallography and Scattering Methods
Diffraction
Electric waves
Electromagnetic radiation
Electromagnetic waves
Epoxy resins
Fourier transforms
Infrared spectroscopy
Iron
Materials Science
Microspheres
Microwave absorption
Network analysers
Organic chemistry
Particle size
Particulate composites
Polymer matrix composites
Polymer Sciences
Polymerization
Powders
Scanning electron microscopy
Shells
Solid Mechanics
Thickness
Transmission electron microscopy
X-ray diffraction
X-rays
title Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characterization%20of%20carbonyl%20iron@epoxy%20core%E2%80%93shell%20microspheres%20for%20enhanced%20microwave%20absorption%20performance&rft.jtitle=Journal%20of%20materials%20science&rft.au=Zuo,%20Yuxin&rft.date=2019-09-01&rft.volume=54&rft.issue=18&rft.spage=11827&rft.epage=11840&rft.pages=11827-11840&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03770-8&rft_dat=%3Cgale_proqu%3EA590911228%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-bf1049a4d623f0ae19016869e25a0fcecb35bbc522c60f93b6cfc61fa4158d8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2255498840&rft_id=info:pmid/&rft_galeid=A590911228&rfr_iscdi=true