Loading…

Root system chip-firing I: interval-firing

Jim Propp recently introduced a variant of chip-firing on a line where the chips are given distinct integer labels. Hopkins, McConville, and Propp showed that this process is confluent from some (but not all) initial configurations of chips. We recast their set-up in terms of root systems: labeled c...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2019-08, Vol.292 (3-4), p.1337-1385
Main Authors: Galashin, Pavel, Hopkins, Sam, McConville, Thomas, Postnikov, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-9e8147fc2609e733494a843f3f5cd0e0a764b85769e2df8f681528376db9667b3
cites cdi_FETCH-LOGICAL-c316t-9e8147fc2609e733494a843f3f5cd0e0a764b85769e2df8f681528376db9667b3
container_end_page 1385
container_issue 3-4
container_start_page 1337
container_title Mathematische Zeitschrift
container_volume 292
creator Galashin, Pavel
Hopkins, Sam
McConville, Thomas
Postnikov, Alexander
description Jim Propp recently introduced a variant of chip-firing on a line where the chips are given distinct integer labels. Hopkins, McConville, and Propp showed that this process is confluent from some (but not all) initial configurations of chips. We recast their set-up in terms of root systems: labeled chip-firing can be seen as a root-firing process which allows the moves for α ∈ Φ + whenever ⟨ λ , α ∨ ⟩ = 0 , where  Φ + is the set of positive roots of a root system of Type A and λ is a weight of this root system. We are thus motivated to study the exact same root-firing process for an arbitrary root system. Actually, this central root-firing process is the subject of a sequel to this paper. In the present paper, we instead study the interval root-firing processes determined by for α ∈ Φ + whenever  ⟨ λ , α ∨ ⟩ ∈ [ - k - 1 , k - 1 ] or  ⟨ λ , α ∨ ⟩ ∈ [ - k , k - 1 ] , for any k ≥ 0 . We prove that these interval-firing processes are always confluent, from any initial weight. We also show that there is a natural way to consistently label the stable points of these interval-firing processes across all values of k so that the number of weights with given stabilization is a polynomial in  k . We conjecture that these Ehrhart-like polynomials have nonnegative integer coefficients.
doi_str_mv 10.1007/s00209-018-2159-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2255587500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2255587500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9e8147fc2609e733494a843f3f5cd0e0a764b85769e2df8f681528376db9667b3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMouFY_gLcFb0J0Jv_jTYrVQkEQPYftNtEtbXdNtkK_vVm24MnTwMx7b3g_Qq4R7hBA3ycABpYCGspQWoonpEDBGUXD-Ckp8llSabQ4JxcprQHyUYuC3L61bV-mQ-r9tqy_mo6GJja7z3L-UDa73sefanNcXZKzUG2SvzrOCfmYPb1PX-ji9Xk-fVzQmqPqqfUGhQ41U2C95lxYURnBAw-yXoGHSiuxNFIr69kqmKAMSma4VqulVUov-YTcjLldbL_3PvVu3e7jLr90jEmZS0iArMJRVcc2peiD62KzreLBIbgBiRuRuIzEDUgcZg8bPakbCvn4l_y_6RcZrWEC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255587500</pqid></control><display><type>article</type><title>Root system chip-firing I: interval-firing</title><source>Springer Nature</source><creator>Galashin, Pavel ; Hopkins, Sam ; McConville, Thomas ; Postnikov, Alexander</creator><creatorcontrib>Galashin, Pavel ; Hopkins, Sam ; McConville, Thomas ; Postnikov, Alexander</creatorcontrib><description>Jim Propp recently introduced a variant of chip-firing on a line where the chips are given distinct integer labels. Hopkins, McConville, and Propp showed that this process is confluent from some (but not all) initial configurations of chips. We recast their set-up in terms of root systems: labeled chip-firing can be seen as a root-firing process which allows the moves for α ∈ Φ + whenever ⟨ λ , α ∨ ⟩ = 0 , where  Φ + is the set of positive roots of a root system of Type A and λ is a weight of this root system. We are thus motivated to study the exact same root-firing process for an arbitrary root system. Actually, this central root-firing process is the subject of a sequel to this paper. In the present paper, we instead study the interval root-firing processes determined by for α ∈ Φ + whenever  ⟨ λ , α ∨ ⟩ ∈ [ - k - 1 , k - 1 ] or  ⟨ λ , α ∨ ⟩ ∈ [ - k , k - 1 ] , for any k ≥ 0 . We prove that these interval-firing processes are always confluent, from any initial weight. We also show that there is a natural way to consistently label the stable points of these interval-firing processes across all values of k so that the number of weights with given stabilization is a polynomial in  k . We conjecture that these Ehrhart-like polynomials have nonnegative integer coefficients.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-018-2159-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Firing ; Integers ; Mathematics ; Mathematics and Statistics ; Polynomials ; Weight</subject><ispartof>Mathematische Zeitschrift, 2019-08, Vol.292 (3-4), p.1337-1385</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9e8147fc2609e733494a843f3f5cd0e0a764b85769e2df8f681528376db9667b3</citedby><cites>FETCH-LOGICAL-c316t-9e8147fc2609e733494a843f3f5cd0e0a764b85769e2df8f681528376db9667b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Galashin, Pavel</creatorcontrib><creatorcontrib>Hopkins, Sam</creatorcontrib><creatorcontrib>McConville, Thomas</creatorcontrib><creatorcontrib>Postnikov, Alexander</creatorcontrib><title>Root system chip-firing I: interval-firing</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Jim Propp recently introduced a variant of chip-firing on a line where the chips are given distinct integer labels. Hopkins, McConville, and Propp showed that this process is confluent from some (but not all) initial configurations of chips. We recast their set-up in terms of root systems: labeled chip-firing can be seen as a root-firing process which allows the moves for α ∈ Φ + whenever ⟨ λ , α ∨ ⟩ = 0 , where  Φ + is the set of positive roots of a root system of Type A and λ is a weight of this root system. We are thus motivated to study the exact same root-firing process for an arbitrary root system. Actually, this central root-firing process is the subject of a sequel to this paper. In the present paper, we instead study the interval root-firing processes determined by for α ∈ Φ + whenever  ⟨ λ , α ∨ ⟩ ∈ [ - k - 1 , k - 1 ] or  ⟨ λ , α ∨ ⟩ ∈ [ - k , k - 1 ] , for any k ≥ 0 . We prove that these interval-firing processes are always confluent, from any initial weight. We also show that there is a natural way to consistently label the stable points of these interval-firing processes across all values of k so that the number of weights with given stabilization is a polynomial in  k . We conjecture that these Ehrhart-like polynomials have nonnegative integer coefficients.</description><subject>Firing</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Weight</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMouFY_gLcFb0J0Jv_jTYrVQkEQPYftNtEtbXdNtkK_vVm24MnTwMx7b3g_Qq4R7hBA3ycABpYCGspQWoonpEDBGUXD-Ckp8llSabQ4JxcprQHyUYuC3L61bV-mQ-r9tqy_mo6GJja7z3L-UDa73sefanNcXZKzUG2SvzrOCfmYPb1PX-ji9Xk-fVzQmqPqqfUGhQ41U2C95lxYURnBAw-yXoGHSiuxNFIr69kqmKAMSma4VqulVUov-YTcjLldbL_3PvVu3e7jLr90jEmZS0iArMJRVcc2peiD62KzreLBIbgBiRuRuIzEDUgcZg8bPakbCvn4l_y_6RcZrWEC</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Galashin, Pavel</creator><creator>Hopkins, Sam</creator><creator>McConville, Thomas</creator><creator>Postnikov, Alexander</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190801</creationdate><title>Root system chip-firing I: interval-firing</title><author>Galashin, Pavel ; Hopkins, Sam ; McConville, Thomas ; Postnikov, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9e8147fc2609e733494a843f3f5cd0e0a764b85769e2df8f681528376db9667b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Firing</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galashin, Pavel</creatorcontrib><creatorcontrib>Hopkins, Sam</creatorcontrib><creatorcontrib>McConville, Thomas</creatorcontrib><creatorcontrib>Postnikov, Alexander</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galashin, Pavel</au><au>Hopkins, Sam</au><au>McConville, Thomas</au><au>Postnikov, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root system chip-firing I: interval-firing</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>292</volume><issue>3-4</issue><spage>1337</spage><epage>1385</epage><pages>1337-1385</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Jim Propp recently introduced a variant of chip-firing on a line where the chips are given distinct integer labels. Hopkins, McConville, and Propp showed that this process is confluent from some (but not all) initial configurations of chips. We recast their set-up in terms of root systems: labeled chip-firing can be seen as a root-firing process which allows the moves for α ∈ Φ + whenever ⟨ λ , α ∨ ⟩ = 0 , where  Φ + is the set of positive roots of a root system of Type A and λ is a weight of this root system. We are thus motivated to study the exact same root-firing process for an arbitrary root system. Actually, this central root-firing process is the subject of a sequel to this paper. In the present paper, we instead study the interval root-firing processes determined by for α ∈ Φ + whenever  ⟨ λ , α ∨ ⟩ ∈ [ - k - 1 , k - 1 ] or  ⟨ λ , α ∨ ⟩ ∈ [ - k , k - 1 ] , for any k ≥ 0 . We prove that these interval-firing processes are always confluent, from any initial weight. We also show that there is a natural way to consistently label the stable points of these interval-firing processes across all values of k so that the number of weights with given stabilization is a polynomial in  k . We conjecture that these Ehrhart-like polynomials have nonnegative integer coefficients.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-018-2159-1</doi><tpages>49</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2019-08, Vol.292 (3-4), p.1337-1385
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2255587500
source Springer Nature
subjects Firing
Integers
Mathematics
Mathematics and Statistics
Polynomials
Weight
title Root system chip-firing I: interval-firing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root%20system%20chip-firing%20I:%20interval-firing&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Galashin,%20Pavel&rft.date=2019-08-01&rft.volume=292&rft.issue=3-4&rft.spage=1337&rft.epage=1385&rft.pages=1337-1385&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-018-2159-1&rft_dat=%3Cproquest_cross%3E2255587500%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9e8147fc2609e733494a843f3f5cd0e0a764b85769e2df8f681528376db9667b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2255587500&rft_id=info:pmid/&rfr_iscdi=true