Loading…
Multiple positive fixed points for the sum of expansive mappings and k‐set contractions
In this work, we are concerned with the existence of multiple positive fixed points for the sum of an expansive mapping with constant h > 1 and a k‐set contraction when 0 ≤ k 1 and an e‐concave operator and an e‐convex operator is considered. Two examples of application illustrate some of the th...
Saved in:
Published in: | Mathematical methods in the applied sciences 2019-09, Vol.42 (13), p.4412-4426 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2932-12fbdb9ee8bf78677888848ed12480620ce890a9857b989537a384066ef127133 |
---|---|
cites | cdi_FETCH-LOGICAL-c2932-12fbdb9ee8bf78677888848ed12480620ce890a9857b989537a384066ef127133 |
container_end_page | 4426 |
container_issue | 13 |
container_start_page | 4412 |
container_title | Mathematical methods in the applied sciences |
container_volume | 42 |
creator | Benzenati, Lyna Mebarki, Karima |
description | In this work, we are concerned with the existence of multiple positive fixed points for the sum of an expansive mapping with constant h > 1 and a k‐set contraction when 0 ≤ k 1 and an e‐concave operator and an e‐convex operator is considered. Two examples of application illustrate some of the theoretical results. |
doi_str_mv | 10.1002/mma.5662 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2256017704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256017704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-12fbdb9ee8bf78677888848ed12480620ce890a9857b989537a384066ef127133</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWFNtJ_DFWiC-pFQsMTJaT2OCSxMF2oN14BJ6RJ8GlrNxyOumnO90fgFOMZhghctF1alZSSvbABCMhMlwwug8mCDOUFQQXh-AohBVCiGNMJuBpObbRDq2Ggws22ncNjV3rJo22jwEa52F80TCMHXQG6vWg-rBVnRoG2z8HqPoGvn5_fgUdYe366FUdrevDMTgwqg365K9PweP11cPlbba4v7m7nC-ymoicZJiYqqmE1rwyjFPGeKqC6waTgiNKUK25QErwklWCizJnKucFolQbTBjO8yk42-0dvHsbdYhy5Ubfp5OSkJKmxxkqkjrfqdq7ELw2cvC2U34jMZLb4GQKTm6DSzTb0Q_b6s2_Ti6X81__AwsMbxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256017704</pqid></control><display><type>article</type><title>Multiple positive fixed points for the sum of expansive mappings and k‐set contractions</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Benzenati, Lyna ; Mebarki, Karima</creator><creatorcontrib>Benzenati, Lyna ; Mebarki, Karima</creatorcontrib><description>In this work, we are concerned with the existence of multiple positive fixed points for the sum of an expansive mapping with constant h > 1 and a k‐set contraction when 0 ≤ k < h − 1. In particular, the case of the sum of an expansive mapping with constant h > 1 and an e‐concave operator and an e‐convex operator is considered. Two examples of application illustrate some of the theoretical results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5662</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Expansion ; expansive mapping ; e‐concave operator ; e‐convex operator ; k‐set contraction ; Mapping ; sum of operators</subject><ispartof>Mathematical methods in the applied sciences, 2019-09, Vol.42 (13), p.4412-4426</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-12fbdb9ee8bf78677888848ed12480620ce890a9857b989537a384066ef127133</citedby><cites>FETCH-LOGICAL-c2932-12fbdb9ee8bf78677888848ed12480620ce890a9857b989537a384066ef127133</cites><orcidid>0000-0002-6679-5059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benzenati, Lyna</creatorcontrib><creatorcontrib>Mebarki, Karima</creatorcontrib><title>Multiple positive fixed points for the sum of expansive mappings and k‐set contractions</title><title>Mathematical methods in the applied sciences</title><description>In this work, we are concerned with the existence of multiple positive fixed points for the sum of an expansive mapping with constant h > 1 and a k‐set contraction when 0 ≤ k < h − 1. In particular, the case of the sum of an expansive mapping with constant h > 1 and an e‐concave operator and an e‐convex operator is considered. Two examples of application illustrate some of the theoretical results.</description><subject>Expansion</subject><subject>expansive mapping</subject><subject>e‐concave operator</subject><subject>e‐convex operator</subject><subject>k‐set contraction</subject><subject>Mapping</subject><subject>sum of operators</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWFNtJ_DFWiC-pFQsMTJaT2OCSxMF2oN14BJ6RJ8GlrNxyOumnO90fgFOMZhghctF1alZSSvbABCMhMlwwug8mCDOUFQQXh-AohBVCiGNMJuBpObbRDq2Ggws22ncNjV3rJo22jwEa52F80TCMHXQG6vWg-rBVnRoG2z8HqPoGvn5_fgUdYe366FUdrevDMTgwqg365K9PweP11cPlbba4v7m7nC-ymoicZJiYqqmE1rwyjFPGeKqC6waTgiNKUK25QErwklWCizJnKucFolQbTBjO8yk42-0dvHsbdYhy5Ubfp5OSkJKmxxkqkjrfqdq7ELw2cvC2U34jMZLb4GQKTm6DSzTb0Q_b6s2_Ti6X81__AwsMbxg</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Benzenati, Lyna</creator><creator>Mebarki, Karima</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-6679-5059</orcidid></search><sort><creationdate>20190915</creationdate><title>Multiple positive fixed points for the sum of expansive mappings and k‐set contractions</title><author>Benzenati, Lyna ; Mebarki, Karima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-12fbdb9ee8bf78677888848ed12480620ce890a9857b989537a384066ef127133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Expansion</topic><topic>expansive mapping</topic><topic>e‐concave operator</topic><topic>e‐convex operator</topic><topic>k‐set contraction</topic><topic>Mapping</topic><topic>sum of operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benzenati, Lyna</creatorcontrib><creatorcontrib>Mebarki, Karima</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benzenati, Lyna</au><au>Mebarki, Karima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple positive fixed points for the sum of expansive mappings and k‐set contractions</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>42</volume><issue>13</issue><spage>4412</spage><epage>4426</epage><pages>4412-4426</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this work, we are concerned with the existence of multiple positive fixed points for the sum of an expansive mapping with constant h > 1 and a k‐set contraction when 0 ≤ k < h − 1. In particular, the case of the sum of an expansive mapping with constant h > 1 and an e‐concave operator and an e‐convex operator is considered. Two examples of application illustrate some of the theoretical results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5662</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6679-5059</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2019-09, Vol.42 (13), p.4412-4426 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2256017704 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Expansion expansive mapping e‐concave operator e‐convex operator k‐set contraction Mapping sum of operators |
title | Multiple positive fixed points for the sum of expansive mappings and k‐set contractions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20positive%20fixed%20points%20for%20the%20sum%20of%20expansive%20mappings%20and%20k%E2%80%90set%20contractions&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Benzenati,%20Lyna&rft.date=2019-09-15&rft.volume=42&rft.issue=13&rft.spage=4412&rft.epage=4426&rft.pages=4412-4426&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5662&rft_dat=%3Cproquest_cross%3E2256017704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2932-12fbdb9ee8bf78677888848ed12480620ce890a9857b989537a384066ef127133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2256017704&rft_id=info:pmid/&rfr_iscdi=true |