Loading…
Conditions for confluence of innermost terminating term rewriting systems
This paper presents a counterexample for the open conjecture whether innermost joinability of all critical pairs ensures confluence of innermost terminating term rewriting systems. We then show that innermost joinability of all normalized instances of the critical pairs is a necessary and sufficient...
Saved in:
Published in: | Applicable algebra in engineering, communication and computing communication and computing, 2019-08, Vol.30 (4), p.349-360 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a counterexample for the open conjecture whether innermost joinability of all critical pairs ensures confluence of innermost terminating term rewriting systems. We then show that innermost joinability of all normalized instances of the critical pairs is a necessary and sufficient condition. Using this condition, we give a decidable sufficient condition for confluence of innermost terminating systems. Finally, we enrich the condition by introducing the notion of left-stable rules. As a corollary, confluence of innermost terminating left-weakly-shallow TRSs is shown to be decidable. |
---|---|
ISSN: | 0938-1279 1432-0622 |
DOI: | 10.1007/s00200-018-0377-8 |