Loading…
Twin formation from a twin boundary in Mg during in-situ nanomechanical testing
An important fundamental question regarding deformation twinning is whether it is possible for twins to nucleate at boundaries or interfaces when specific stress fields are present. A corollary that follows from this question is: if this is indeed possible, what determines the proper stress field an...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-06, Vol.759, p.142-153 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An important fundamental question regarding deformation twinning is whether it is possible for twins to nucleate at boundaries or interfaces when specific stress fields are present. A corollary that follows from this question is: if this is indeed possible, what determines the proper stress field and how does it occur at the nanoscale? Here, we demonstrate the application of an in-situ nanoindentation approach to confine and dynamically capture the stages in the formation of a deformation twin at an internal twin boundary in single crystal Mg. We observe the formation of contraction twin embryos at the pre-existing extension twin boundary, and the subsequent propagation of the twin embryos into the crystal. We reveal an intermediate step, involving the coalescence of tiny embryos into a larger embryo before the nucleus emanates into the crystal. De-twinnning of the twin embryos is captured during unloading and shown to leave a remnant nanosized twin ( |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2019.04.117 |