Loading…
Hard superconducting gap and diffusion-induced superconductors in Ge-Si nanowires
We show a hard induced superconducting gap in a Ge-Si nanowire Josephson transistor up to in-plane magnetic fields of \(250\) mT, an important step towards creating and detecting Majorana zero modes in this system. A hard induced gap requires a highly homogeneous tunneling heterointerface between th...
Saved in:
Published in: | arXiv.org 2019-12 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ridderbos, Joost Brauns, Matthias Shen, Jie de Vries, Folkert K Ang, Li Kölling, Sebastian Verheijen, Marcel A Brinkman, Alexander Wilfred G van der Wiel Erik P A M Bakkers Zwanenburg, Floris A |
description | We show a hard induced superconducting gap in a Ge-Si nanowire Josephson transistor up to in-plane magnetic fields of \(250\) mT, an important step towards creating and detecting Majorana zero modes in this system. A hard induced gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at \(180\) \(^\circ\)C during which aluminium inter-diffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (\(T_\mathrm{C}=0.9\) K) and a higher critical field (\(B_\mathrm{C}=0.9-1.2\) T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (\(T_\mathrm{C}=2.9\) K) and critical field (\(B_\mathrm{C}=3.4\) T) is found. The small size of diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction. |
doi_str_mv | 10.48550/arxiv.1907.05510 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2258495106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258495106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-c9a1ebcd050fb40545c044133a31cf55aa6b5b3732e81c70ea3783ea73c9e55e3</originalsourceid><addsrcrecordid>eNpVj8FKAzEURYMgWGo_wF3AdcaXvLzJzFKKtkJBxO7Lm0ympEimJh31863oxtVd3MM9XCFuNFS2IYI7zl_xo9ItuAqINFyImUHUqrHGXIlFKQcAMLUzRDgTL2vOvSzTMWQ_pn7yp5j2cs9HyamXfRyGqcQxqfjThf_kmIuMSa6Ceo0ycRo_Yw7lWlwO_FbC4i_nYvv4sF2u1eZ59bS83ygmUyvfsg6d74Fg6CyQJQ_WakRG7Qci5rqjDh2a0GjvIDC6BgM79G0gCjgXt7-zxzy-T6Gcdodxyuls3BlDjW3P12v8BuHlUYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258495106</pqid></control><display><type>article</type><title>Hard superconducting gap and diffusion-induced superconductors in Ge-Si nanowires</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ridderbos, Joost ; Brauns, Matthias ; Shen, Jie ; de Vries, Folkert K ; Ang, Li ; Kölling, Sebastian ; Verheijen, Marcel A ; Brinkman, Alexander ; Wilfred G van der Wiel ; Erik P A M Bakkers ; Zwanenburg, Floris A</creator><creatorcontrib>Ridderbos, Joost ; Brauns, Matthias ; Shen, Jie ; de Vries, Folkert K ; Ang, Li ; Kölling, Sebastian ; Verheijen, Marcel A ; Brinkman, Alexander ; Wilfred G van der Wiel ; Erik P A M Bakkers ; Zwanenburg, Floris A</creatorcontrib><description>We show a hard induced superconducting gap in a Ge-Si nanowire Josephson transistor up to in-plane magnetic fields of \(250\) mT, an important step towards creating and detecting Majorana zero modes in this system. A hard induced gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at \(180\) \(^\circ\)C during which aluminium inter-diffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (\(T_\mathrm{C}=0.9\) K) and a higher critical field (\(B_\mathrm{C}=0.9-1.2\) T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (\(T_\mathrm{C}=2.9\) K) and critical field (\(B_\mathrm{C}=3.4\) T) is found. The small size of diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1907.05510</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aluminum ; Critical field (superconductivity) ; Critical temperature ; Diffusion ; Germanium ; Magnetic fields ; Nanowires ; Silicon ; Superconductivity ; Transition temperature</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2258495106?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Ridderbos, Joost</creatorcontrib><creatorcontrib>Brauns, Matthias</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>de Vries, Folkert K</creatorcontrib><creatorcontrib>Ang, Li</creatorcontrib><creatorcontrib>Kölling, Sebastian</creatorcontrib><creatorcontrib>Verheijen, Marcel A</creatorcontrib><creatorcontrib>Brinkman, Alexander</creatorcontrib><creatorcontrib>Wilfred G van der Wiel</creatorcontrib><creatorcontrib>Erik P A M Bakkers</creatorcontrib><creatorcontrib>Zwanenburg, Floris A</creatorcontrib><title>Hard superconducting gap and diffusion-induced superconductors in Ge-Si nanowires</title><title>arXiv.org</title><description>We show a hard induced superconducting gap in a Ge-Si nanowire Josephson transistor up to in-plane magnetic fields of \(250\) mT, an important step towards creating and detecting Majorana zero modes in this system. A hard induced gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at \(180\) \(^\circ\)C during which aluminium inter-diffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (\(T_\mathrm{C}=0.9\) K) and a higher critical field (\(B_\mathrm{C}=0.9-1.2\) T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (\(T_\mathrm{C}=2.9\) K) and critical field (\(B_\mathrm{C}=3.4\) T) is found. The small size of diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction.</description><subject>Aluminum</subject><subject>Critical field (superconductivity)</subject><subject>Critical temperature</subject><subject>Diffusion</subject><subject>Germanium</subject><subject>Magnetic fields</subject><subject>Nanowires</subject><subject>Silicon</subject><subject>Superconductivity</subject><subject>Transition temperature</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVj8FKAzEURYMgWGo_wF3AdcaXvLzJzFKKtkJBxO7Lm0ympEimJh31863oxtVd3MM9XCFuNFS2IYI7zl_xo9ItuAqINFyImUHUqrHGXIlFKQcAMLUzRDgTL2vOvSzTMWQ_pn7yp5j2cs9HyamXfRyGqcQxqfjThf_kmIuMSa6Ceo0ycRo_Yw7lWlwO_FbC4i_nYvv4sF2u1eZ59bS83ygmUyvfsg6d74Fg6CyQJQ_WakRG7Qci5rqjDh2a0GjvIDC6BgM79G0gCjgXt7-zxzy-T6Gcdodxyuls3BlDjW3P12v8BuHlUYg</recordid><startdate>20191220</startdate><enddate>20191220</enddate><creator>Ridderbos, Joost</creator><creator>Brauns, Matthias</creator><creator>Shen, Jie</creator><creator>de Vries, Folkert K</creator><creator>Ang, Li</creator><creator>Kölling, Sebastian</creator><creator>Verheijen, Marcel A</creator><creator>Brinkman, Alexander</creator><creator>Wilfred G van der Wiel</creator><creator>Erik P A M Bakkers</creator><creator>Zwanenburg, Floris A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191220</creationdate><title>Hard superconducting gap and diffusion-induced superconductors in Ge-Si nanowires</title><author>Ridderbos, Joost ; Brauns, Matthias ; Shen, Jie ; de Vries, Folkert K ; Ang, Li ; Kölling, Sebastian ; Verheijen, Marcel A ; Brinkman, Alexander ; Wilfred G van der Wiel ; Erik P A M Bakkers ; Zwanenburg, Floris A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-c9a1ebcd050fb40545c044133a31cf55aa6b5b3732e81c70ea3783ea73c9e55e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Critical field (superconductivity)</topic><topic>Critical temperature</topic><topic>Diffusion</topic><topic>Germanium</topic><topic>Magnetic fields</topic><topic>Nanowires</topic><topic>Silicon</topic><topic>Superconductivity</topic><topic>Transition temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Ridderbos, Joost</creatorcontrib><creatorcontrib>Brauns, Matthias</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>de Vries, Folkert K</creatorcontrib><creatorcontrib>Ang, Li</creatorcontrib><creatorcontrib>Kölling, Sebastian</creatorcontrib><creatorcontrib>Verheijen, Marcel A</creatorcontrib><creatorcontrib>Brinkman, Alexander</creatorcontrib><creatorcontrib>Wilfred G van der Wiel</creatorcontrib><creatorcontrib>Erik P A M Bakkers</creatorcontrib><creatorcontrib>Zwanenburg, Floris A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ridderbos, Joost</au><au>Brauns, Matthias</au><au>Shen, Jie</au><au>de Vries, Folkert K</au><au>Ang, Li</au><au>Kölling, Sebastian</au><au>Verheijen, Marcel A</au><au>Brinkman, Alexander</au><au>Wilfred G van der Wiel</au><au>Erik P A M Bakkers</au><au>Zwanenburg, Floris A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hard superconducting gap and diffusion-induced superconductors in Ge-Si nanowires</atitle><jtitle>arXiv.org</jtitle><date>2019-12-20</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We show a hard induced superconducting gap in a Ge-Si nanowire Josephson transistor up to in-plane magnetic fields of \(250\) mT, an important step towards creating and detecting Majorana zero modes in this system. A hard induced gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at \(180\) \(^\circ\)C during which aluminium inter-diffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (\(T_\mathrm{C}=0.9\) K) and a higher critical field (\(B_\mathrm{C}=0.9-1.2\) T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (\(T_\mathrm{C}=2.9\) K) and critical field (\(B_\mathrm{C}=3.4\) T) is found. The small size of diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1907.05510</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2258495106 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Aluminum Critical field (superconductivity) Critical temperature Diffusion Germanium Magnetic fields Nanowires Silicon Superconductivity Transition temperature |
title | Hard superconducting gap and diffusion-induced superconductors in Ge-Si nanowires |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hard%20superconducting%20gap%20and%20diffusion-induced%20superconductors%20in%20Ge-Si%20nanowires&rft.jtitle=arXiv.org&rft.au=Ridderbos,%20Joost&rft.date=2019-12-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1907.05510&rft_dat=%3Cproquest%3E2258495106%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-c9a1ebcd050fb40545c044133a31cf55aa6b5b3732e81c70ea3783ea73c9e55e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2258495106&rft_id=info:pmid/&rfr_iscdi=true |