Loading…

Hot quark matter and (proto-) neutron stars

In part one of this paper, we use a non-local extension of the 3-flavor Polyakov-Nambu-Jona-Lasinio model, which takes into account flavor-mixing, momentum dependent quark masses, and vector interactions among quarks, to investigate the possible existence of a spinodal region (determined by the vani...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-07
Main Authors: Malfatti, G, Orsaria, M, Contrera, G A, Weber, F, Ranea-Sandoval, I F
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Malfatti, G
Orsaria, M
Contrera, G A
Weber, F
Ranea-Sandoval, I F
description In part one of this paper, we use a non-local extension of the 3-flavor Polyakov-Nambu-Jona-Lasinio model, which takes into account flavor-mixing, momentum dependent quark masses, and vector interactions among quarks, to investigate the possible existence of a spinodal region (determined by the vanishing of the speed of sound) in the QCD phase diagram and determine the temperature and chemical potential of the critical end point. In part two of the paper, we investigate the quark-hadron composition of baryonic matter at zero as well as non-zero temperature. This is of great topical interest for the analysis and interpretation of neutron star merger events such as GW170817. With this in mind, we determine the composition of proto-neutron star matter for entropies and lepton fractions that are typical of such matter. These compositions are used to delineate the evolution of proto-neutron stars to neutron stars in the baryon-mass versus gravitational-mass diagram. The hot stellar models turn out to contain significant fractions of hyperons and \(\Delta\)-isobars but no deconfined quarks. The latter, are found to exist only in cold neutron stars.
doi_str_mv 10.48550/arxiv.1907.06597
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2258497650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258497650</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-4165b73d8bd6613c7c900eacd13169cfd818e52f54fea03be2a7f401a7031b43</originalsourceid><addsrcrecordid>eNotjstKAzEUQIMgWGo_wF3AjSIz3jxuHkspaoWCC92XO5MErDqxSUb8fAu6OrtzDmMXAnrtEOGWys_bdy882B4MenvCFlIp0Tkt5Rlb1boHAGmsRFQLdrPJjR9mKu_8k1qLhdMU-NVXyS1313yKcyt54rVRqefsNNFHjat_LtnLw_3retNtnx-f1nfbjlBCp4XBwarghmCMUKMdPUCkMQgljB9TcMJFlAl1igRqiJJs0iDIghKDVkt2-Wc9PhzmWNtun-cyHYM7KdFpbw2C-gXcgkIB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258497650</pqid></control><display><type>article</type><title>Hot quark matter and (proto-) neutron stars</title><source>Publicly Available Content Database</source><creator>Malfatti, G ; Orsaria, M ; Contrera, G A ; Weber, F ; Ranea-Sandoval, I F</creator><creatorcontrib>Malfatti, G ; Orsaria, M ; Contrera, G A ; Weber, F ; Ranea-Sandoval, I F</creatorcontrib><description>In part one of this paper, we use a non-local extension of the 3-flavor Polyakov-Nambu-Jona-Lasinio model, which takes into account flavor-mixing, momentum dependent quark masses, and vector interactions among quarks, to investigate the possible existence of a spinodal region (determined by the vanishing of the speed of sound) in the QCD phase diagram and determine the temperature and chemical potential of the critical end point. In part two of the paper, we investigate the quark-hadron composition of baryonic matter at zero as well as non-zero temperature. This is of great topical interest for the analysis and interpretation of neutron star merger events such as GW170817. With this in mind, we determine the composition of proto-neutron star matter for entropies and lepton fractions that are typical of such matter. These compositions are used to delineate the evolution of proto-neutron stars to neutron stars in the baryon-mass versus gravitational-mass diagram. The hot stellar models turn out to contain significant fractions of hyperons and \(\Delta\)-isobars but no deconfined quarks. The latter, are found to exist only in cold neutron stars.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1907.06597</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomical models ; Baryons ; Chemical potential ; Cold neutrons ; Composition ; Flavor (particle physics) ; Hyperons ; Leptons ; Neutron stars ; Neutrons ; Nuclear isobars ; Organic chemistry ; Phase diagrams ; Quarks ; Star mergers ; Stellar evolution ; Stellar models</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2258497650?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Malfatti, G</creatorcontrib><creatorcontrib>Orsaria, M</creatorcontrib><creatorcontrib>Contrera, G A</creatorcontrib><creatorcontrib>Weber, F</creatorcontrib><creatorcontrib>Ranea-Sandoval, I F</creatorcontrib><title>Hot quark matter and (proto-) neutron stars</title><title>arXiv.org</title><description>In part one of this paper, we use a non-local extension of the 3-flavor Polyakov-Nambu-Jona-Lasinio model, which takes into account flavor-mixing, momentum dependent quark masses, and vector interactions among quarks, to investigate the possible existence of a spinodal region (determined by the vanishing of the speed of sound) in the QCD phase diagram and determine the temperature and chemical potential of the critical end point. In part two of the paper, we investigate the quark-hadron composition of baryonic matter at zero as well as non-zero temperature. This is of great topical interest for the analysis and interpretation of neutron star merger events such as GW170817. With this in mind, we determine the composition of proto-neutron star matter for entropies and lepton fractions that are typical of such matter. These compositions are used to delineate the evolution of proto-neutron stars to neutron stars in the baryon-mass versus gravitational-mass diagram. The hot stellar models turn out to contain significant fractions of hyperons and \(\Delta\)-isobars but no deconfined quarks. The latter, are found to exist only in cold neutron stars.</description><subject>Astronomical models</subject><subject>Baryons</subject><subject>Chemical potential</subject><subject>Cold neutrons</subject><subject>Composition</subject><subject>Flavor (particle physics)</subject><subject>Hyperons</subject><subject>Leptons</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear isobars</subject><subject>Organic chemistry</subject><subject>Phase diagrams</subject><subject>Quarks</subject><subject>Star mergers</subject><subject>Stellar evolution</subject><subject>Stellar models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstKAzEUQIMgWGo_wF3AjSIz3jxuHkspaoWCC92XO5MErDqxSUb8fAu6OrtzDmMXAnrtEOGWys_bdy882B4MenvCFlIp0Tkt5Rlb1boHAGmsRFQLdrPJjR9mKu_8k1qLhdMU-NVXyS1313yKcyt54rVRqefsNNFHjat_LtnLw_3retNtnx-f1nfbjlBCp4XBwarghmCMUKMdPUCkMQgljB9TcMJFlAl1igRqiJJs0iDIghKDVkt2-Wc9PhzmWNtun-cyHYM7KdFpbw2C-gXcgkIB</recordid><startdate>20190705</startdate><enddate>20190705</enddate><creator>Malfatti, G</creator><creator>Orsaria, M</creator><creator>Contrera, G A</creator><creator>Weber, F</creator><creator>Ranea-Sandoval, I F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20190705</creationdate><title>Hot quark matter and (proto-) neutron stars</title><author>Malfatti, G ; Orsaria, M ; Contrera, G A ; Weber, F ; Ranea-Sandoval, I F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-4165b73d8bd6613c7c900eacd13169cfd818e52f54fea03be2a7f401a7031b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomical models</topic><topic>Baryons</topic><topic>Chemical potential</topic><topic>Cold neutrons</topic><topic>Composition</topic><topic>Flavor (particle physics)</topic><topic>Hyperons</topic><topic>Leptons</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear isobars</topic><topic>Organic chemistry</topic><topic>Phase diagrams</topic><topic>Quarks</topic><topic>Star mergers</topic><topic>Stellar evolution</topic><topic>Stellar models</topic><toplevel>online_resources</toplevel><creatorcontrib>Malfatti, G</creatorcontrib><creatorcontrib>Orsaria, M</creatorcontrib><creatorcontrib>Contrera, G A</creatorcontrib><creatorcontrib>Weber, F</creatorcontrib><creatorcontrib>Ranea-Sandoval, I F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malfatti, G</au><au>Orsaria, M</au><au>Contrera, G A</au><au>Weber, F</au><au>Ranea-Sandoval, I F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot quark matter and (proto-) neutron stars</atitle><jtitle>arXiv.org</jtitle><date>2019-07-05</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In part one of this paper, we use a non-local extension of the 3-flavor Polyakov-Nambu-Jona-Lasinio model, which takes into account flavor-mixing, momentum dependent quark masses, and vector interactions among quarks, to investigate the possible existence of a spinodal region (determined by the vanishing of the speed of sound) in the QCD phase diagram and determine the temperature and chemical potential of the critical end point. In part two of the paper, we investigate the quark-hadron composition of baryonic matter at zero as well as non-zero temperature. This is of great topical interest for the analysis and interpretation of neutron star merger events such as GW170817. With this in mind, we determine the composition of proto-neutron star matter for entropies and lepton fractions that are typical of such matter. These compositions are used to delineate the evolution of proto-neutron stars to neutron stars in the baryon-mass versus gravitational-mass diagram. The hot stellar models turn out to contain significant fractions of hyperons and \(\Delta\)-isobars but no deconfined quarks. The latter, are found to exist only in cold neutron stars.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1907.06597</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2258497650
source Publicly Available Content Database
subjects Astronomical models
Baryons
Chemical potential
Cold neutrons
Composition
Flavor (particle physics)
Hyperons
Leptons
Neutron stars
Neutrons
Nuclear isobars
Organic chemistry
Phase diagrams
Quarks
Star mergers
Stellar evolution
Stellar models
title Hot quark matter and (proto-) neutron stars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20quark%20matter%20and%20(proto-)%20neutron%20stars&rft.jtitle=arXiv.org&rft.au=Malfatti,%20G&rft.date=2019-07-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1907.06597&rft_dat=%3Cproquest%3E2258497650%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-4165b73d8bd6613c7c900eacd13169cfd818e52f54fea03be2a7f401a7031b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2258497650&rft_id=info:pmid/&rfr_iscdi=true