Loading…
Catalytic reduction of 4-nitrobenzoic acid by cis-[Rh(CO)2(amine)2](PF6) complexes under water-gas shift reaction conditions: kinetics study
Rhodium(I) complexes of the type, cis-[Rh(CO)2(amine)2](PF6) where (amine = 3-picoline, 2-picoline, pyridine, 2,6-lutidina or 3,5-lutidine) dissolved in 80% aqueous amine solutions catalyzed the selective reduction of 4-nitrobenzoic acid to 4-aminobenzoic acid under CO atmosphere. The importance of...
Saved in:
Published in: | Catalysis letters 2004-06, Vol.95 (3-4), p.143-150 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rhodium(I) complexes of the type, cis-[Rh(CO)2(amine)2](PF6) where (amine = 3-picoline, 2-picoline, pyridine, 2,6-lutidina or 3,5-lutidine) dissolved in 80% aqueous amine solutions catalyzed the selective reduction of 4-nitrobenzoic acid to 4-aminobenzoic acid under CO atmosphere. The importance of these catalytic systems is their high chemo selectivity for the aromatic nitro group of the 4-nitrobenzoic acid with respect to the carboxylic group, allowing the production of the desired aromatic amine in high yields. The 4-aminobenzoic acid production depends on the nature of the coordinated amine. The Rh/3,5-lutidine system, the most active catalyst among tested, displays turnover frequencies for 4-aminobenzoic acid production of about 173 moles per mole Rh per day for [Rh] = 1 × 10−4 mol, [4-nitrobenzoic acid] = 3.82 × 10−3mol, 10 mL of 80% aqueous 3,5-lutidine, P(CO) = 0.9 atm at 100 °C. Analyses of kinetic results for the Rh/3,5-lutidine system show a first order dependence on 4-nitrobenzoic acid concentration, a non-linear dependence on CO pressure, a segmented Arrhenius plot and dependence on the nature of the reducing gas agent. These data are discussed in terms of a possible mechanism. |
---|---|
ISSN: | 1011-372X 1572-879X |
DOI: | 10.1023/B:CATL.0000027287.78214.bf |