Loading…
Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot
This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed...
Saved in:
Published in: | Autonomous robots 2016-03, Vol.40 (3), p.429-455 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563 |
---|---|
cites | cdi_FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563 |
container_end_page | 455 |
container_issue | 3 |
container_start_page | 429 |
container_title | Autonomous robots |
container_volume | 40 |
creator | Kuindersma, Scott Deits, Robin Fallon, Maurice Valenzuela, Andrés Dai, Hongkai Permenter, Frank Koolen, Twan Marion, Pat Tedrake, Russ |
description | This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc. |
doi_str_mv | 10.1007/s10514-015-9479-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259040341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259040341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB8_wF3AbaM3k0nSLKX4gkI3ug6ZJNNOmSZjMl3orzd1BFeuLly-c-49B6EbCncUQN5nCpzWBCgnqpaKsBM0o1wyInklT9EMVKUI54qdo4ucdwCgJMAM2fUwdvvuy4xdDKQx2TvcRxv38bjAQ29C6MJmjn0u3A81xyY4bGMYU-yx87nbBNzGhMetx2bsTcbbw96E2DmcYhPHK3TWmj776995id6fHt-WL2S1fn5dPqyIrRUfiZLCMFEJq4BRWktYVFRUrrF1Uzctt613orFSOOeU8cLbtiRXppFsAYJzwS7R7eQ7pPhxKA_rXTykUE7qquIKamA1LRSdKJtizsm3ekglWfrUFPSxSz11qUuX-tilZkVTTZpc2LDx6c_5f9E34up4CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259040341</pqid></control><display><type>article</type><title>Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot</title><source>Springer Link</source><creator>Kuindersma, Scott ; Deits, Robin ; Fallon, Maurice ; Valenzuela, Andrés ; Dai, Hongkai ; Permenter, Frank ; Koolen, Twan ; Marion, Pat ; Tedrake, Russ</creator><creatorcontrib>Kuindersma, Scott ; Deits, Robin ; Fallon, Maurice ; Valenzuela, Andrés ; Dai, Hongkai ; Permenter, Frank ; Koolen, Twan ; Marion, Pat ; Tedrake, Russ</creatorcontrib><description>This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-015-9479-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Imaging ; Control ; Engineering ; Humanoid ; Locomotion ; Mechatronics ; Optimization ; Pattern Recognition and Graphics ; Planning ; Robotics ; Robotics and Automation ; Robots ; State estimation ; Task complexity ; Vision ; Walking</subject><ispartof>Autonomous robots, 2016-03, Vol.40 (3), p.429-455</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Autonomous Robots is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563</citedby><cites>FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Kuindersma, Scott</creatorcontrib><creatorcontrib>Deits, Robin</creatorcontrib><creatorcontrib>Fallon, Maurice</creatorcontrib><creatorcontrib>Valenzuela, Andrés</creatorcontrib><creatorcontrib>Dai, Hongkai</creatorcontrib><creatorcontrib>Permenter, Frank</creatorcontrib><creatorcontrib>Koolen, Twan</creatorcontrib><creatorcontrib>Marion, Pat</creatorcontrib><creatorcontrib>Tedrake, Russ</creatorcontrib><title>Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Engineering</subject><subject>Humanoid</subject><subject>Locomotion</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Pattern Recognition and Graphics</subject><subject>Planning</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>State estimation</subject><subject>Task complexity</subject><subject>Vision</subject><subject>Walking</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWB8_wF3AbaM3k0nSLKX4gkI3ug6ZJNNOmSZjMl3orzd1BFeuLly-c-49B6EbCncUQN5nCpzWBCgnqpaKsBM0o1wyInklT9EMVKUI54qdo4ucdwCgJMAM2fUwdvvuy4xdDKQx2TvcRxv38bjAQ29C6MJmjn0u3A81xyY4bGMYU-yx87nbBNzGhMetx2bsTcbbw96E2DmcYhPHK3TWmj776995id6fHt-WL2S1fn5dPqyIrRUfiZLCMFEJq4BRWktYVFRUrrF1Uzctt613orFSOOeU8cLbtiRXppFsAYJzwS7R7eQ7pPhxKA_rXTykUE7qquIKamA1LRSdKJtizsm3ekglWfrUFPSxSz11qUuX-tilZkVTTZpc2LDx6c_5f9E34up4CQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Kuindersma, Scott</creator><creator>Deits, Robin</creator><creator>Fallon, Maurice</creator><creator>Valenzuela, Andrés</creator><creator>Dai, Hongkai</creator><creator>Permenter, Frank</creator><creator>Koolen, Twan</creator><creator>Marion, Pat</creator><creator>Tedrake, Russ</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20160301</creationdate><title>Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot</title><author>Kuindersma, Scott ; Deits, Robin ; Fallon, Maurice ; Valenzuela, Andrés ; Dai, Hongkai ; Permenter, Frank ; Koolen, Twan ; Marion, Pat ; Tedrake, Russ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Engineering</topic><topic>Humanoid</topic><topic>Locomotion</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Pattern Recognition and Graphics</topic><topic>Planning</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>State estimation</topic><topic>Task complexity</topic><topic>Vision</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuindersma, Scott</creatorcontrib><creatorcontrib>Deits, Robin</creatorcontrib><creatorcontrib>Fallon, Maurice</creatorcontrib><creatorcontrib>Valenzuela, Andrés</creatorcontrib><creatorcontrib>Dai, Hongkai</creatorcontrib><creatorcontrib>Permenter, Frank</creatorcontrib><creatorcontrib>Koolen, Twan</creatorcontrib><creatorcontrib>Marion, Pat</creatorcontrib><creatorcontrib>Tedrake, Russ</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuindersma, Scott</au><au>Deits, Robin</au><au>Fallon, Maurice</au><au>Valenzuela, Andrés</au><au>Dai, Hongkai</au><au>Permenter, Frank</au><au>Koolen, Twan</au><au>Marion, Pat</au><au>Tedrake, Russ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>40</volume><issue>3</issue><spage>429</spage><epage>455</epage><pages>429-455</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10514-015-9479-3</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 2016-03, Vol.40 (3), p.429-455 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_proquest_journals_2259040341 |
source | Springer Link |
subjects | Algorithms Artificial Intelligence Computer Imaging Control Engineering Humanoid Locomotion Mechatronics Optimization Pattern Recognition and Graphics Planning Robotics Robotics and Automation Robots State estimation Task complexity Vision Walking |
title | Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization-based%20locomotion%20planning,%20estimation,%20and%20control%20design%20for%20the%20atlas%20humanoid%20robot&rft.jtitle=Autonomous%20robots&rft.au=Kuindersma,%20Scott&rft.date=2016-03-01&rft.volume=40&rft.issue=3&rft.spage=429&rft.epage=455&rft.pages=429-455&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-015-9479-3&rft_dat=%3Cproquest_cross%3E2259040341%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259040341&rft_id=info:pmid/&rfr_iscdi=true |