Loading…

Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot

This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed...

Full description

Saved in:
Bibliographic Details
Published in:Autonomous robots 2016-03, Vol.40 (3), p.429-455
Main Authors: Kuindersma, Scott, Deits, Robin, Fallon, Maurice, Valenzuela, Andrés, Dai, Hongkai, Permenter, Frank, Koolen, Twan, Marion, Pat, Tedrake, Russ
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563
cites cdi_FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563
container_end_page 455
container_issue 3
container_start_page 429
container_title Autonomous robots
container_volume 40
creator Kuindersma, Scott
Deits, Robin
Fallon, Maurice
Valenzuela, Andrés
Dai, Hongkai
Permenter, Frank
Koolen, Twan
Marion, Pat
Tedrake, Russ
description This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.
doi_str_mv 10.1007/s10514-015-9479-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259040341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259040341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB8_wF3AbaM3k0nSLKX4gkI3ug6ZJNNOmSZjMl3orzd1BFeuLly-c-49B6EbCncUQN5nCpzWBCgnqpaKsBM0o1wyInklT9EMVKUI54qdo4ucdwCgJMAM2fUwdvvuy4xdDKQx2TvcRxv38bjAQ29C6MJmjn0u3A81xyY4bGMYU-yx87nbBNzGhMetx2bsTcbbw96E2DmcYhPHK3TWmj776995id6fHt-WL2S1fn5dPqyIrRUfiZLCMFEJq4BRWktYVFRUrrF1Uzctt613orFSOOeU8cLbtiRXppFsAYJzwS7R7eQ7pPhxKA_rXTykUE7qquIKamA1LRSdKJtizsm3ekglWfrUFPSxSz11qUuX-tilZkVTTZpc2LDx6c_5f9E34up4CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259040341</pqid></control><display><type>article</type><title>Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot</title><source>Springer Link</source><creator>Kuindersma, Scott ; Deits, Robin ; Fallon, Maurice ; Valenzuela, Andrés ; Dai, Hongkai ; Permenter, Frank ; Koolen, Twan ; Marion, Pat ; Tedrake, Russ</creator><creatorcontrib>Kuindersma, Scott ; Deits, Robin ; Fallon, Maurice ; Valenzuela, Andrés ; Dai, Hongkai ; Permenter, Frank ; Koolen, Twan ; Marion, Pat ; Tedrake, Russ</creatorcontrib><description>This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-015-9479-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Imaging ; Control ; Engineering ; Humanoid ; Locomotion ; Mechatronics ; Optimization ; Pattern Recognition and Graphics ; Planning ; Robotics ; Robotics and Automation ; Robots ; State estimation ; Task complexity ; Vision ; Walking</subject><ispartof>Autonomous robots, 2016-03, Vol.40 (3), p.429-455</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Autonomous Robots is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563</citedby><cites>FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Kuindersma, Scott</creatorcontrib><creatorcontrib>Deits, Robin</creatorcontrib><creatorcontrib>Fallon, Maurice</creatorcontrib><creatorcontrib>Valenzuela, Andrés</creatorcontrib><creatorcontrib>Dai, Hongkai</creatorcontrib><creatorcontrib>Permenter, Frank</creatorcontrib><creatorcontrib>Koolen, Twan</creatorcontrib><creatorcontrib>Marion, Pat</creatorcontrib><creatorcontrib>Tedrake, Russ</creatorcontrib><title>Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Engineering</subject><subject>Humanoid</subject><subject>Locomotion</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Pattern Recognition and Graphics</subject><subject>Planning</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>State estimation</subject><subject>Task complexity</subject><subject>Vision</subject><subject>Walking</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWB8_wF3AbaM3k0nSLKX4gkI3ug6ZJNNOmSZjMl3orzd1BFeuLly-c-49B6EbCncUQN5nCpzWBCgnqpaKsBM0o1wyInklT9EMVKUI54qdo4ucdwCgJMAM2fUwdvvuy4xdDKQx2TvcRxv38bjAQ29C6MJmjn0u3A81xyY4bGMYU-yx87nbBNzGhMetx2bsTcbbw96E2DmcYhPHK3TWmj776995id6fHt-WL2S1fn5dPqyIrRUfiZLCMFEJq4BRWktYVFRUrrF1Uzctt613orFSOOeU8cLbtiRXppFsAYJzwS7R7eQ7pPhxKA_rXTykUE7qquIKamA1LRSdKJtizsm3ekglWfrUFPSxSz11qUuX-tilZkVTTZpc2LDx6c_5f9E34up4CQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Kuindersma, Scott</creator><creator>Deits, Robin</creator><creator>Fallon, Maurice</creator><creator>Valenzuela, Andrés</creator><creator>Dai, Hongkai</creator><creator>Permenter, Frank</creator><creator>Koolen, Twan</creator><creator>Marion, Pat</creator><creator>Tedrake, Russ</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20160301</creationdate><title>Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot</title><author>Kuindersma, Scott ; Deits, Robin ; Fallon, Maurice ; Valenzuela, Andrés ; Dai, Hongkai ; Permenter, Frank ; Koolen, Twan ; Marion, Pat ; Tedrake, Russ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Engineering</topic><topic>Humanoid</topic><topic>Locomotion</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Pattern Recognition and Graphics</topic><topic>Planning</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>State estimation</topic><topic>Task complexity</topic><topic>Vision</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuindersma, Scott</creatorcontrib><creatorcontrib>Deits, Robin</creatorcontrib><creatorcontrib>Fallon, Maurice</creatorcontrib><creatorcontrib>Valenzuela, Andrés</creatorcontrib><creatorcontrib>Dai, Hongkai</creatorcontrib><creatorcontrib>Permenter, Frank</creatorcontrib><creatorcontrib>Koolen, Twan</creatorcontrib><creatorcontrib>Marion, Pat</creatorcontrib><creatorcontrib>Tedrake, Russ</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuindersma, Scott</au><au>Deits, Robin</au><au>Fallon, Maurice</au><au>Valenzuela, Andrés</au><au>Dai, Hongkai</au><au>Permenter, Frank</au><au>Koolen, Twan</au><au>Marion, Pat</au><au>Tedrake, Russ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>40</volume><issue>3</issue><spage>429</spage><epage>455</epage><pages>429-455</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10514-015-9479-3</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0929-5593
ispartof Autonomous robots, 2016-03, Vol.40 (3), p.429-455
issn 0929-5593
1573-7527
language eng
recordid cdi_proquest_journals_2259040341
source Springer Link
subjects Algorithms
Artificial Intelligence
Computer Imaging
Control
Engineering
Humanoid
Locomotion
Mechatronics
Optimization
Pattern Recognition and Graphics
Planning
Robotics
Robotics and Automation
Robots
State estimation
Task complexity
Vision
Walking
title Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization-based%20locomotion%20planning,%20estimation,%20and%20control%20design%20for%20the%20atlas%20humanoid%20robot&rft.jtitle=Autonomous%20robots&rft.au=Kuindersma,%20Scott&rft.date=2016-03-01&rft.volume=40&rft.issue=3&rft.spage=429&rft.epage=455&rft.pages=429-455&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-015-9479-3&rft_dat=%3Cproquest_cross%3E2259040341%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-976a3626c9031147082162dbc4b4bf5cfed6bc76ddd9ae6ecf1009ab738065563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259040341&rft_id=info:pmid/&rfr_iscdi=true