Loading…
Using progesterone 5β-reductase, a gene encoding a key enzyme in the cardenolide biosynthesis, to infer the phylogeny of the genus Digitalis
The progesterone 5β-reductase (5β-POR), a key enzyme in the cardenolide biosynthesis, was sequenced for 21 species of Digitalis and Isoplexis to infer phylogenetic and biogeographic relationships. This new secondary metabolism molecular marker was compared to the previously applied nuclear ITS and p...
Saved in:
Published in: | Plant systematics and evolution 2008-03, Vol.271 (1/2), p.65-78 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The progesterone 5β-reductase (5β-POR), a key enzyme in the cardenolide biosynthesis, was sequenced for 21 species of Digitalis and Isoplexis to infer phylogenetic and biogeographic relationships. This new secondary metabolism molecular marker was compared to the previously applied nuclear ITS and plastid trnL-F sequences. The results from separate analyses show high congruence within the genus Digitalis and support the conclusion that all species of Isoplexis have a common origin and are embedded in Digitalis. The genus Isoplexis therefore should be reduced to sectional rank within the genus Digitalis. The sequence analyses give further evidence that additional sequence data increase support for relationships. It demonstrates that poorly supported relationships in smaller data sets may lead to erroneous conclusions about the evolution of the investigated taxa. |
---|---|
ISSN: | 0378-2697 1615-6110 2199-6881 |
DOI: | 10.1007/s00606-007-0616-0 |