Loading…
Phylogenetics and predictive distribution modeling provide insights into the geographic divergence of Eriosyce subgen. Neoporteria (Cactaceae)
The classification of Eriosyce subgenus Neoporteria (“subsection” in the sense of Kattermann) and the role of allopatry/sympatry in the diversification of the group were studied by use of cladistic and predictive distribution modeling methods. We reconstructed the phylogenetic relationships of subge...
Saved in:
Published in: | Plant systematics and evolution 2011-11, Vol.297 (1-2), p.113-128 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-992b9a673153663de5264b79a1633f617ac48d605b4fa4300cd8d0a9f5ced86d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-992b9a673153663de5264b79a1633f617ac48d605b4fa4300cd8d0a9f5ced86d3 |
container_end_page | 128 |
container_issue | 1-2 |
container_start_page | 113 |
container_title | Plant systematics and evolution |
container_volume | 297 |
creator | Guerrero, Pablo C Arroyo, Mary T. K Bustamante, Ramiro O Duarte, Milén Hagemann, Thomas K Walter, Helmut E |
description | The classification of Eriosyce subgenus Neoporteria (“subsection” in the sense of Kattermann) and the role of allopatry/sympatry in the diversification of the group were studied by use of cladistic and predictive distribution modeling methods. We reconstructed the phylogenetic relationships of subgenus Neoporteria by analyzing 38 morphological characters and DNA sequences from two chloroplast regions of 21 taxa from the Chilean subsections of Eriosyce using a Bayesian and maximum likelihood phylogenetic framework. Also, we attempted to find out if the divergence between the sister taxa in the Neoporteria group had been caused by allopatric or sympatric mechanisms. The morphology-based analysis placed E. chilensis basal within the Neoporteria clade and suggested a further broadening of the group by including E. taltalensis var. taltalensis, formerly considered a member of subsection Horridocactus. However, the combined DNA data placed E. sociabilis and E. taltalensis var. taltalensis within the Horridocactus clade, and placed E. chilensis with E. subgibbosa var. litoralis. The broad concept of E. subgibbosa sensu Kattermann (comprising seven infraspecific taxa), was rejected by our combined molecular results. Finally, our results corroborated changes in subsection Neoporteria proposed by various authors and suggested further modifications within Neoporteria. The analyses of the degree of geographic overlap of the predicted distributions indicated null overlap between the sister taxa, and one probable hybrid origin of E. chilensis, indicating that evolutionary divergence is mainly caused by an allopatric process associated with climatic tolerance. |
doi_str_mv | 10.1007/s00606-011-0512-5 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259364362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43558272</jstor_id><sourcerecordid>43558272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-992b9a673153663de5264b79a1633f617ac48d605b4fa4300cd8d0a9f5ced86d3</originalsourceid><addsrcrecordid>eNp9kM1uEzEUhUcIpIbCA3SBsMSmLKZc_88sUVR-pKogQdeWx74zcZSOg-1EykvwzDgaBLuufGWf75zr0zRXFG4ogP6QARSoFihtQVLWymfNiioqW0UpPG9WwHXXMtXri-ZlzlsAqpXQq-b3981pFyecsQSXiZ092Sf0wZVwROJDLikMhxLiTB6jx12YpyqIx-CRhDmHaVNyHUokZYNkwjglu98EV9EjpurrkMSR3KYQ86nO-TDUyxtyj3EfU8EULLleW1esQ4vvXzUvRrvL-Prvedk8fLr9uf7S3n37_HX98a51XLHS9j0beqs0p5IrxT1KpsSge0sV56Oi2jrReQVyEKMVHMD5zoPtR-nQd8rzy-bd4lv_8uuAuZhtPKS5RhrGZM-VqDlVRReVSzHnhKPZp_Bo08lQMOfazVK7qbWbc-1GVoYtTK7aecL03_kp6M0CbXOJ6V-K4FJ2TJ8Xebu8jzYaO6WQzcMPBlQAQMeEpvwPqMmaTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259364362</pqid></control><display><type>article</type><title>Phylogenetics and predictive distribution modeling provide insights into the geographic divergence of Eriosyce subgen. Neoporteria (Cactaceae)</title><source>Springer Nature</source><source>JSTOR</source><creator>Guerrero, Pablo C ; Arroyo, Mary T. K ; Bustamante, Ramiro O ; Duarte, Milén ; Hagemann, Thomas K ; Walter, Helmut E</creator><creatorcontrib>Guerrero, Pablo C ; Arroyo, Mary T. K ; Bustamante, Ramiro O ; Duarte, Milén ; Hagemann, Thomas K ; Walter, Helmut E</creatorcontrib><description>The classification of Eriosyce subgenus Neoporteria (“subsection” in the sense of Kattermann) and the role of allopatry/sympatry in the diversification of the group were studied by use of cladistic and predictive distribution modeling methods. We reconstructed the phylogenetic relationships of subgenus Neoporteria by analyzing 38 morphological characters and DNA sequences from two chloroplast regions of 21 taxa from the Chilean subsections of Eriosyce using a Bayesian and maximum likelihood phylogenetic framework. Also, we attempted to find out if the divergence between the sister taxa in the Neoporteria group had been caused by allopatric or sympatric mechanisms. The morphology-based analysis placed E. chilensis basal within the Neoporteria clade and suggested a further broadening of the group by including E. taltalensis var. taltalensis, formerly considered a member of subsection Horridocactus. However, the combined DNA data placed E. sociabilis and E. taltalensis var. taltalensis within the Horridocactus clade, and placed E. chilensis with E. subgibbosa var. litoralis. The broad concept of E. subgibbosa sensu Kattermann (comprising seven infraspecific taxa), was rejected by our combined molecular results. Finally, our results corroborated changes in subsection Neoporteria proposed by various authors and suggested further modifications within Neoporteria. The analyses of the degree of geographic overlap of the predicted distributions indicated null overlap between the sister taxa, and one probable hybrid origin of E. chilensis, indicating that evolutionary divergence is mainly caused by an allopatric process associated with climatic tolerance.</description><identifier>ISSN: 0378-2697</identifier><identifier>EISSN: 1615-6110</identifier><identifier>EISSN: 2199-6881</identifier><identifier>DOI: 10.1007/s00606-011-0512-5</identifier><language>eng</language><publisher>Vienna: Springer-Verlag</publisher><subject>Allopatry ; Bayesian analysis ; Biological taxonomies ; Biomedical and Life Sciences ; Cactaceae ; Chloroplast DNA ; Chloroplasts ; Datasets ; Deoxyribonucleic acid ; Divergence ; divergent evolution ; DNA ; Ecological modeling ; Gene sequencing ; Geography ; Life Sciences ; Modeling ; Modelling ; Morphology ; Nucleotide sequence ; nucleotide sequences ; Original Article ; Phylogenetics ; Phylogeny ; Plant Anatomy/Development ; Plant Ecology ; Plant Sciences ; Plant Systematics/Taxonomy/Biogeography ; Predictive modeling ; Speciation ; Sympatric populations ; Sympatry ; Taxa</subject><ispartof>Plant systematics and evolution, 2011-11, Vol.297 (1-2), p.113-128</ispartof><rights>Springer-Verlag 2011</rights><rights>Plant Systematics and Evolution is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-992b9a673153663de5264b79a1633f617ac48d605b4fa4300cd8d0a9f5ced86d3</citedby><cites>FETCH-LOGICAL-c362t-992b9a673153663de5264b79a1633f617ac48d605b4fa4300cd8d0a9f5ced86d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43558272$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43558272$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,58220,58453</link.rule.ids></links><search><creatorcontrib>Guerrero, Pablo C</creatorcontrib><creatorcontrib>Arroyo, Mary T. K</creatorcontrib><creatorcontrib>Bustamante, Ramiro O</creatorcontrib><creatorcontrib>Duarte, Milén</creatorcontrib><creatorcontrib>Hagemann, Thomas K</creatorcontrib><creatorcontrib>Walter, Helmut E</creatorcontrib><title>Phylogenetics and predictive distribution modeling provide insights into the geographic divergence of Eriosyce subgen. Neoporteria (Cactaceae)</title><title>Plant systematics and evolution</title><addtitle>Plant Syst Evol</addtitle><description>The classification of Eriosyce subgenus Neoporteria (“subsection” in the sense of Kattermann) and the role of allopatry/sympatry in the diversification of the group were studied by use of cladistic and predictive distribution modeling methods. We reconstructed the phylogenetic relationships of subgenus Neoporteria by analyzing 38 morphological characters and DNA sequences from two chloroplast regions of 21 taxa from the Chilean subsections of Eriosyce using a Bayesian and maximum likelihood phylogenetic framework. Also, we attempted to find out if the divergence between the sister taxa in the Neoporteria group had been caused by allopatric or sympatric mechanisms. The morphology-based analysis placed E. chilensis basal within the Neoporteria clade and suggested a further broadening of the group by including E. taltalensis var. taltalensis, formerly considered a member of subsection Horridocactus. However, the combined DNA data placed E. sociabilis and E. taltalensis var. taltalensis within the Horridocactus clade, and placed E. chilensis with E. subgibbosa var. litoralis. The broad concept of E. subgibbosa sensu Kattermann (comprising seven infraspecific taxa), was rejected by our combined molecular results. Finally, our results corroborated changes in subsection Neoporteria proposed by various authors and suggested further modifications within Neoporteria. The analyses of the degree of geographic overlap of the predicted distributions indicated null overlap between the sister taxa, and one probable hybrid origin of E. chilensis, indicating that evolutionary divergence is mainly caused by an allopatric process associated with climatic tolerance.</description><subject>Allopatry</subject><subject>Bayesian analysis</subject><subject>Biological taxonomies</subject><subject>Biomedical and Life Sciences</subject><subject>Cactaceae</subject><subject>Chloroplast DNA</subject><subject>Chloroplasts</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>Divergence</subject><subject>divergent evolution</subject><subject>DNA</subject><subject>Ecological modeling</subject><subject>Gene sequencing</subject><subject>Geography</subject><subject>Life Sciences</subject><subject>Modeling</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Nucleotide sequence</subject><subject>nucleotide sequences</subject><subject>Original Article</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant Anatomy/Development</subject><subject>Plant Ecology</subject><subject>Plant Sciences</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Predictive modeling</subject><subject>Speciation</subject><subject>Sympatric populations</subject><subject>Sympatry</subject><subject>Taxa</subject><issn>0378-2697</issn><issn>1615-6110</issn><issn>2199-6881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1uEzEUhUcIpIbCA3SBsMSmLKZc_88sUVR-pKogQdeWx74zcZSOg-1EykvwzDgaBLuufGWf75zr0zRXFG4ogP6QARSoFihtQVLWymfNiioqW0UpPG9WwHXXMtXri-ZlzlsAqpXQq-b3981pFyecsQSXiZ092Sf0wZVwROJDLikMhxLiTB6jx12YpyqIx-CRhDmHaVNyHUokZYNkwjglu98EV9EjpurrkMSR3KYQ86nO-TDUyxtyj3EfU8EULLleW1esQ4vvXzUvRrvL-Prvedk8fLr9uf7S3n37_HX98a51XLHS9j0beqs0p5IrxT1KpsSge0sV56Oi2jrReQVyEKMVHMD5zoPtR-nQd8rzy-bd4lv_8uuAuZhtPKS5RhrGZM-VqDlVRReVSzHnhKPZp_Bo08lQMOfazVK7qbWbc-1GVoYtTK7aecL03_kp6M0CbXOJ6V-K4FJ2TJ8Xebu8jzYaO6WQzcMPBlQAQMeEpvwPqMmaTQ</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Guerrero, Pablo C</creator><creator>Arroyo, Mary T. K</creator><creator>Bustamante, Ramiro O</creator><creator>Duarte, Milén</creator><creator>Hagemann, Thomas K</creator><creator>Walter, Helmut E</creator><general>Springer-Verlag</general><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20111101</creationdate><title>Phylogenetics and predictive distribution modeling provide insights into the geographic divergence of Eriosyce subgen. Neoporteria (Cactaceae)</title><author>Guerrero, Pablo C ; Arroyo, Mary T. K ; Bustamante, Ramiro O ; Duarte, Milén ; Hagemann, Thomas K ; Walter, Helmut E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-992b9a673153663de5264b79a1633f617ac48d605b4fa4300cd8d0a9f5ced86d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Allopatry</topic><topic>Bayesian analysis</topic><topic>Biological taxonomies</topic><topic>Biomedical and Life Sciences</topic><topic>Cactaceae</topic><topic>Chloroplast DNA</topic><topic>Chloroplasts</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>Divergence</topic><topic>divergent evolution</topic><topic>DNA</topic><topic>Ecological modeling</topic><topic>Gene sequencing</topic><topic>Geography</topic><topic>Life Sciences</topic><topic>Modeling</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Nucleotide sequence</topic><topic>nucleotide sequences</topic><topic>Original Article</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant Anatomy/Development</topic><topic>Plant Ecology</topic><topic>Plant Sciences</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Predictive modeling</topic><topic>Speciation</topic><topic>Sympatric populations</topic><topic>Sympatry</topic><topic>Taxa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrero, Pablo C</creatorcontrib><creatorcontrib>Arroyo, Mary T. K</creatorcontrib><creatorcontrib>Bustamante, Ramiro O</creatorcontrib><creatorcontrib>Duarte, Milén</creatorcontrib><creatorcontrib>Hagemann, Thomas K</creatorcontrib><creatorcontrib>Walter, Helmut E</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Plant systematics and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerrero, Pablo C</au><au>Arroyo, Mary T. K</au><au>Bustamante, Ramiro O</au><au>Duarte, Milén</au><au>Hagemann, Thomas K</au><au>Walter, Helmut E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phylogenetics and predictive distribution modeling provide insights into the geographic divergence of Eriosyce subgen. Neoporteria (Cactaceae)</atitle><jtitle>Plant systematics and evolution</jtitle><stitle>Plant Syst Evol</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>297</volume><issue>1-2</issue><spage>113</spage><epage>128</epage><pages>113-128</pages><issn>0378-2697</issn><eissn>1615-6110</eissn><eissn>2199-6881</eissn><abstract>The classification of Eriosyce subgenus Neoporteria (“subsection” in the sense of Kattermann) and the role of allopatry/sympatry in the diversification of the group were studied by use of cladistic and predictive distribution modeling methods. We reconstructed the phylogenetic relationships of subgenus Neoporteria by analyzing 38 morphological characters and DNA sequences from two chloroplast regions of 21 taxa from the Chilean subsections of Eriosyce using a Bayesian and maximum likelihood phylogenetic framework. Also, we attempted to find out if the divergence between the sister taxa in the Neoporteria group had been caused by allopatric or sympatric mechanisms. The morphology-based analysis placed E. chilensis basal within the Neoporteria clade and suggested a further broadening of the group by including E. taltalensis var. taltalensis, formerly considered a member of subsection Horridocactus. However, the combined DNA data placed E. sociabilis and E. taltalensis var. taltalensis within the Horridocactus clade, and placed E. chilensis with E. subgibbosa var. litoralis. The broad concept of E. subgibbosa sensu Kattermann (comprising seven infraspecific taxa), was rejected by our combined molecular results. Finally, our results corroborated changes in subsection Neoporteria proposed by various authors and suggested further modifications within Neoporteria. The analyses of the degree of geographic overlap of the predicted distributions indicated null overlap between the sister taxa, and one probable hybrid origin of E. chilensis, indicating that evolutionary divergence is mainly caused by an allopatric process associated with climatic tolerance.</abstract><cop>Vienna</cop><pub>Springer-Verlag</pub><doi>10.1007/s00606-011-0512-5</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-2697 |
ispartof | Plant systematics and evolution, 2011-11, Vol.297 (1-2), p.113-128 |
issn | 0378-2697 1615-6110 2199-6881 |
language | eng |
recordid | cdi_proquest_journals_2259364362 |
source | Springer Nature; JSTOR |
subjects | Allopatry Bayesian analysis Biological taxonomies Biomedical and Life Sciences Cactaceae Chloroplast DNA Chloroplasts Datasets Deoxyribonucleic acid Divergence divergent evolution DNA Ecological modeling Gene sequencing Geography Life Sciences Modeling Modelling Morphology Nucleotide sequence nucleotide sequences Original Article Phylogenetics Phylogeny Plant Anatomy/Development Plant Ecology Plant Sciences Plant Systematics/Taxonomy/Biogeography Predictive modeling Speciation Sympatric populations Sympatry Taxa |
title | Phylogenetics and predictive distribution modeling provide insights into the geographic divergence of Eriosyce subgen. Neoporteria (Cactaceae) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phylogenetics%20and%20predictive%20distribution%20modeling%20provide%20insights%20into%20the%20geographic%20divergence%20of%20Eriosyce%20subgen.%20Neoporteria%20(Cactaceae)&rft.jtitle=Plant%20systematics%20and%20evolution&rft.au=Guerrero,%20Pablo%20C&rft.date=2011-11-01&rft.volume=297&rft.issue=1-2&rft.spage=113&rft.epage=128&rft.pages=113-128&rft.issn=0378-2697&rft.eissn=1615-6110&rft_id=info:doi/10.1007/s00606-011-0512-5&rft_dat=%3Cjstor_proqu%3E43558272%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-992b9a673153663de5264b79a1633f617ac48d605b4fa4300cd8d0a9f5ced86d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259364362&rft_id=info:pmid/&rft_jstor_id=43558272&rfr_iscdi=true |