Loading…
Pollen morphology and its taxonomic significance in the tribe Gochnatieae (Compositae, Gochnatioideae)
In the context of recent molecular phylogenies of the basal grades of Compositae, we investigated the utility of pollen morphology within the tribe Gochnatieae. The pollen of 64 species of Anastraphia, Cnicothamnus, Cyclolepis, Gochnatia, Pentaphorus, and Richterago was studied using light microscop...
Saved in:
Published in: | Plant systematics and evolution 2013-05, Vol.299 (5), p.935-948 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the context of recent molecular phylogenies of the basal grades of Compositae, we investigated the utility of pollen morphology within the tribe Gochnatieae. The pollen of 64 species of Anastraphia, Cnicothamnus, Cyclolepis, Gochnatia, Pentaphorus, and Richterago was studied using light microscopy and scanning electron microscopy. In addition, three extra-Gochnatieae genera (Ianthopappus, Leucomeris, and Nouelia) were examined as they were traditionally morphologically related to members of the tribe Gochnatieae. Three of the species of Gochnatieae were examined using transmission electron microscopy. Two pollen types, and two new subtypes, have been recognized on the basis of the pollen shape, size, and exine sculpture. The pollen features of Gochnatia sect. Moquiniastrum and G. cordata are similar and distinctive within the genus and support the recently re-circumscribed section Hedraiophyllum. Within the species with echinate pollen surface, the distinctive spine length of Anastraphia supports its recent resurrection as a genus. The identity of Pentaphorus could not be supported by pollen features as was for other morphological characteristics. The pollen features shared across Cyclolepis, Ianthopappus, Leucomeris, Nouelia and Gochnatia sect. Moquiniastrum, as well as those shared by Richterago and Anastraphia could be a result of parallel evolution. |
---|---|
ISSN: | 0378-2697 1615-6110 2199-6881 |
DOI: | 10.1007/s00606-013-0774-1 |