Loading…

The generalized M–J sets for bicomplex numbers

We explained the theory about bicomplex numbers, discussed the precondition of that addition and multiplication are closed in bicomplex number mapping of constructing generalized Mandelbrot–Julia sets (abbreviated to M–J sets), and listed out the definition and constructing arithmetic of the general...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2013-04, Vol.72 (1-2), p.17-26
Main Authors: Wang, Xing-yuan, Song, Wen-jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-6e07b394928d7723f334939de4666a84d5e8da3334f968ac374ccad056b423a03
cites cdi_FETCH-LOGICAL-c349t-6e07b394928d7723f334939de4666a84d5e8da3334f968ac374ccad056b423a03
container_end_page 26
container_issue 1-2
container_start_page 17
container_title Nonlinear dynamics
container_volume 72
creator Wang, Xing-yuan
Song, Wen-jing
description We explained the theory about bicomplex numbers, discussed the precondition of that addition and multiplication are closed in bicomplex number mapping of constructing generalized Mandelbrot–Julia sets (abbreviated to M–J sets), and listed out the definition and constructing arithmetic of the generalized Mandelbrot–Julia sets in bicomplex numbers system. And we studied the connectedness of the generalized M–J sets, the feature of the generalized Tetrabrot, and the relationship between the generalized M sets and its corresponding generalized J sets for bicomplex numbers in theory. Using the generalized M–J sets for bicomplex numbers constructed on computer, the author not only studied the relationship between the generalized Tetrabrot sets and its corresponding generalized J sets, but also studied their fractal feature, finding that: (1) the bigger the value of the escape time is, the more similar the 3-D generalized J sets and its corresponding 2-D J sets are; (2) the generalized Tetrabrot set contains a great deal information of constructing its corresponding 3-D generalized J sets; (3) both the generalized Tetrabrot sets and its corresponding cross section make a feature of axis symmetry; and (4) the bigger the value of the escape time is, the more similar the cross section and the generalized Tetrabrot sets are.
doi_str_mv 10.1007/s11071-012-0686-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259382118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259382118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6e07b394928d7723f334939de4666a84d5e8da3334f968ac374ccad056b423a03</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwF3A9eidn8zPUopapeKmQnfDJLmpKU1SZ1pQV76Db-iTOCWCK1cXDuc7Fz5CzhlcMgB9FRkDzSgwTkEZRdUBGbFcC8qVXRySEVguKVhYHJOTGFcAIDiYEYH5C2ZL7DD4dfOBVfb4_fn1kEXcxqzuQ1Y0Zd9u1viWdbu2wBBPyVHt1xHPfu-YPN_ezCdTOnu6u59cz2gppN1ShaALYaXlptKai1qkWNgKpVLKG1nlaCovUlpbZXwptCxLX0GuCsmFBzEmF8PuJvSvO4xbt-p3oUsvHee5FYYzZlKLDa0y9DEGrN0mNK0P746B24txgxiXxLi9GKcSwwcmpm63xPC3_D_0AzkMZH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259382118</pqid></control><display><type>article</type><title>The generalized M–J sets for bicomplex numbers</title><source>Springer Nature</source><creator>Wang, Xing-yuan ; Song, Wen-jing</creator><creatorcontrib>Wang, Xing-yuan ; Song, Wen-jing</creatorcontrib><description>We explained the theory about bicomplex numbers, discussed the precondition of that addition and multiplication are closed in bicomplex number mapping of constructing generalized Mandelbrot–Julia sets (abbreviated to M–J sets), and listed out the definition and constructing arithmetic of the generalized Mandelbrot–Julia sets in bicomplex numbers system. And we studied the connectedness of the generalized M–J sets, the feature of the generalized Tetrabrot, and the relationship between the generalized M sets and its corresponding generalized J sets for bicomplex numbers in theory. Using the generalized M–J sets for bicomplex numbers constructed on computer, the author not only studied the relationship between the generalized Tetrabrot sets and its corresponding generalized J sets, but also studied their fractal feature, finding that: (1) the bigger the value of the escape time is, the more similar the 3-D generalized J sets and its corresponding 2-D J sets are; (2) the generalized Tetrabrot set contains a great deal information of constructing its corresponding 3-D generalized J sets; (3) both the generalized Tetrabrot sets and its corresponding cross section make a feature of axis symmetry; and (4) the bigger the value of the escape time is, the more similar the cross section and the generalized Tetrabrot sets are.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-012-0686-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Cross-sections ; Dynamical Systems ; Engineering ; Mapping ; Mechanical Engineering ; Multiplication ; Original Paper ; Set theory ; Vibration</subject><ispartof>Nonlinear dynamics, 2013-04, Vol.72 (1-2), p.17-26</ispartof><rights>Springer Science+Business Media Dordrecht 2012</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6e07b394928d7723f334939de4666a84d5e8da3334f968ac374ccad056b423a03</citedby><cites>FETCH-LOGICAL-c349t-6e07b394928d7723f334939de4666a84d5e8da3334f968ac374ccad056b423a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Xing-yuan</creatorcontrib><creatorcontrib>Song, Wen-jing</creatorcontrib><title>The generalized M–J sets for bicomplex numbers</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We explained the theory about bicomplex numbers, discussed the precondition of that addition and multiplication are closed in bicomplex number mapping of constructing generalized Mandelbrot–Julia sets (abbreviated to M–J sets), and listed out the definition and constructing arithmetic of the generalized Mandelbrot–Julia sets in bicomplex numbers system. And we studied the connectedness of the generalized M–J sets, the feature of the generalized Tetrabrot, and the relationship between the generalized M sets and its corresponding generalized J sets for bicomplex numbers in theory. Using the generalized M–J sets for bicomplex numbers constructed on computer, the author not only studied the relationship between the generalized Tetrabrot sets and its corresponding generalized J sets, but also studied their fractal feature, finding that: (1) the bigger the value of the escape time is, the more similar the 3-D generalized J sets and its corresponding 2-D J sets are; (2) the generalized Tetrabrot set contains a great deal information of constructing its corresponding 3-D generalized J sets; (3) both the generalized Tetrabrot sets and its corresponding cross section make a feature of axis symmetry; and (4) the bigger the value of the escape time is, the more similar the cross section and the generalized Tetrabrot sets are.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Cross-sections</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mapping</subject><subject>Mechanical Engineering</subject><subject>Multiplication</subject><subject>Original Paper</subject><subject>Set theory</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwF3A9eidn8zPUopapeKmQnfDJLmpKU1SZ1pQV76Db-iTOCWCK1cXDuc7Fz5CzhlcMgB9FRkDzSgwTkEZRdUBGbFcC8qVXRySEVguKVhYHJOTGFcAIDiYEYH5C2ZL7DD4dfOBVfb4_fn1kEXcxqzuQ1Y0Zd9u1viWdbu2wBBPyVHt1xHPfu-YPN_ezCdTOnu6u59cz2gppN1ShaALYaXlptKai1qkWNgKpVLKG1nlaCovUlpbZXwptCxLX0GuCsmFBzEmF8PuJvSvO4xbt-p3oUsvHee5FYYzZlKLDa0y9DEGrN0mNK0P746B24txgxiXxLi9GKcSwwcmpm63xPC3_D_0AzkMZH8</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Wang, Xing-yuan</creator><creator>Song, Wen-jing</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130401</creationdate><title>The generalized M–J sets for bicomplex numbers</title><author>Wang, Xing-yuan ; Song, Wen-jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6e07b394928d7723f334939de4666a84d5e8da3334f968ac374ccad056b423a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Cross-sections</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mapping</topic><topic>Mechanical Engineering</topic><topic>Multiplication</topic><topic>Original Paper</topic><topic>Set theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xing-yuan</creatorcontrib><creatorcontrib>Song, Wen-jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xing-yuan</au><au>Song, Wen-jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The generalized M–J sets for bicomplex numbers</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>72</volume><issue>1-2</issue><spage>17</spage><epage>26</epage><pages>17-26</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We explained the theory about bicomplex numbers, discussed the precondition of that addition and multiplication are closed in bicomplex number mapping of constructing generalized Mandelbrot–Julia sets (abbreviated to M–J sets), and listed out the definition and constructing arithmetic of the generalized Mandelbrot–Julia sets in bicomplex numbers system. And we studied the connectedness of the generalized M–J sets, the feature of the generalized Tetrabrot, and the relationship between the generalized M sets and its corresponding generalized J sets for bicomplex numbers in theory. Using the generalized M–J sets for bicomplex numbers constructed on computer, the author not only studied the relationship between the generalized Tetrabrot sets and its corresponding generalized J sets, but also studied their fractal feature, finding that: (1) the bigger the value of the escape time is, the more similar the 3-D generalized J sets and its corresponding 2-D J sets are; (2) the generalized Tetrabrot set contains a great deal information of constructing its corresponding 3-D generalized J sets; (3) both the generalized Tetrabrot sets and its corresponding cross section make a feature of axis symmetry; and (4) the bigger the value of the escape time is, the more similar the cross section and the generalized Tetrabrot sets are.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-012-0686-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2013-04, Vol.72 (1-2), p.17-26
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259382118
source Springer Nature
subjects Automotive Engineering
Classical Mechanics
Control
Cross-sections
Dynamical Systems
Engineering
Mapping
Mechanical Engineering
Multiplication
Original Paper
Set theory
Vibration
title The generalized M–J sets for bicomplex numbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20generalized%20M%E2%80%93J%20sets%20for%20bicomplex%20numbers&rft.jtitle=Nonlinear%20dynamics&rft.au=Wang,%20Xing-yuan&rft.date=2013-04-01&rft.volume=72&rft.issue=1-2&rft.spage=17&rft.epage=26&rft.pages=17-26&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-012-0686-6&rft_dat=%3Cproquest_cross%3E2259382118%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-6e07b394928d7723f334939de4666a84d5e8da3334f968ac374ccad056b423a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259382118&rft_id=info:pmid/&rfr_iscdi=true