Loading…
Synthesis and characterization of silver-rich coatings loaded with functionalized clay nanoparticles
A synthetic exfoliated nanoclay smectite type, Laponite® S482, was incorporated as a functionalized load in a silica hybrid matrix synthesized by the sol–gel route. The previous functionalization was carried out through a “grafting” reaction with (3-glycidoxypropyl)trimethoxysilane (GPTMS) assisted...
Saved in:
Published in: | Journal of sol-gel science and technology 2018-03, Vol.85 (3), p.529-538 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A synthetic exfoliated nanoclay smectite type, Laponite® S482, was incorporated as a functionalized load in a silica hybrid matrix synthesized by the sol–gel route. The previous functionalization was carried out through a “grafting” reaction with (3-glycidoxypropyl)trimethoxysilane (GPTMS) assisted by ultrasonic dispersion. The precursor sols were synthesized by acid-catalyzed hydrolytic condensation between tetraethoxysilane (TEOS) and functionalized GPTMS, a silver ions source was added in order to obtain a coating material with controlled silver releasing properties. Coatings were obtained by “dip-coating” on different substrates. Structural characterization of the coatings was conducted by SAXS and SEM-EDS, the results revealed a complex silica matrix with intercalated nanoclays, an organic fraction and a homogeneous content of Ag
+
. The electrochemical characterization was realized by EIS tests on stainless steel coated substrates AISI 316L type; the results showed good barriers properties and a high integrity of the coatings loaded with nanoclay. The evolution of the release of Ag
+
ions was studied by XRF, through exposing the coatings to a leaching process at steady state and determining the residual content of Ag within the coat at different immersion times. It was found that the addition of 1.5 wt. % of clay, in respect to condensed silica, decreased the initial diffusion rate of Ag
+
ions at near the half part, allowing its potential use in the development of antibacterial coatings with longer terms of life. |
---|---|
ISSN: | 0928-0707 1573-4846 |
DOI: | 10.1007/s10971-018-4600-7 |