Loading…
State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory
In this paper, the state estimation problem is investigated for neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. The neural networks have a finite number of modes and the modes may jump from one to another according to a Markov chain. The main purpo...
Saved in:
Published in: | Nonlinear dynamics 2012-10, Vol.70 (2), p.1421-1434 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the state estimation problem is investigated for neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. The neural networks have a finite number of modes and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time-delays, the dynamics of the estimation error is globally stable in the mean square and passive from the control input to the output error. Based on the new Lyapunov–Krasovskii functional and passivity theory, delay-dependent conditions are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate effectiveness of the proposed method and results. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-012-0544-6 |