Loading…

Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients

We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derive...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2016-08, Vol.85 (3), p.1913-1918
Main Authors: Zhu, Hai-Ping, Chen, Li, Chen, Hai-Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3
cites cdi_FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3
container_end_page 1918
container_issue 3
container_start_page 1913
container_title Nonlinear dynamics
container_volume 85
creator Zhu, Hai-Ping
Chen, Li
Chen, Hai-Yan
description We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derived. The evolution behaviors of spatiotemporal Hermite–Gaussian vortex solitons in a diffraction decreasing system are investigated. Results indicate that the topological charge m changes the spiral structures of phase, and its value determines the number of the branch of the spiral phase structures. If the value of parameter n adds, spatiotemporal vortex solitons change their structures. Obviously, the layer of ring solitons along the vertical ( z -axis) direction is decided by n + 1 .
doi_str_mv 10.1007/s11071-016-2804-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259432945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259432945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3</originalsourceid><addsrcrecordid>eNp1kMtKZDEQhoOMYI_6AO4CbmaQaOVycjrLQbyB4EIH3IX0ORWNnE7aJO1lN7t5AN_FF_BN5kk8TQ_MalZVFP_3Q32E7HE45ADtUeEcWs6AayamoJjcIBPetJIJbW6_kAkYoRgYuN0iX0t5AAApYDohv88xz0PFP7_eztyylOAifUq54gstaQg1xUKTp45-kwf8O-vDHGMJKbqBLlyuwQ3DK40pDqkbT6slRHSZXnf3-eO9D_EOM8XHpasjRJ9DvadPLgc3G5B2Cb0PXcBYyw7Z9G4ouPt3bpOfpyc3x-fs8urs4vjHJesk15XJBrwxBrVG0WqnjelQCa88gm4kN2LGYdYIb3rhtMNmaqYzAb0C1ToF0Mttsr_uXeT0uMRS7UNa5vGdYoVojJLCqGZM8XWqy6mUjN4ucpi7_Go52JVvu_ZtR9925dvKkRFrpozZ1dv_mv8PfQJs3YZi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259432945</pqid></control><display><type>article</type><title>Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients</title><source>Springer Link</source><creator>Zhu, Hai-Ping ; Chen, Li ; Chen, Hai-Yan</creator><creatorcontrib>Zhu, Hai-Ping ; Chen, Li ; Chen, Hai-Yan</creatorcontrib><description>We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derived. The evolution behaviors of spatiotemporal Hermite–Gaussian vortex solitons in a diffraction decreasing system are investigated. Results indicate that the topological charge m changes the spiral structures of phase, and its value determines the number of the branch of the spiral phase structures. If the value of parameter n adds, spatiotemporal vortex solitons change their structures. Obviously, the layer of ring solitons along the vertical ( z -axis) direction is decided by n + 1 .</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-016-2804-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Original Paper ; Schrodinger equation ; Solitary waves ; Vibration ; Vortices ; Waves</subject><ispartof>Nonlinear dynamics, 2016-08, Vol.85 (3), p.1913-1918</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3</citedby><cites>FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Hai-Ping</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Chen, Hai-Yan</creatorcontrib><title>Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derived. The evolution behaviors of spatiotemporal Hermite–Gaussian vortex solitons in a diffraction decreasing system are investigated. Results indicate that the topological charge m changes the spiral structures of phase, and its value determines the number of the branch of the spiral phase structures. If the value of parameter n adds, spatiotemporal vortex solitons change their structures. Obviously, the layer of ring solitons along the vertical ( z -axis) direction is decided by n + 1 .</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Vibration</subject><subject>Vortices</subject><subject>Waves</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKZDEQhoOMYI_6AO4CbmaQaOVycjrLQbyB4EIH3IX0ORWNnE7aJO1lN7t5AN_FF_BN5kk8TQ_MalZVFP_3Q32E7HE45ADtUeEcWs6AayamoJjcIBPetJIJbW6_kAkYoRgYuN0iX0t5AAApYDohv88xz0PFP7_eztyylOAifUq54gstaQg1xUKTp45-kwf8O-vDHGMJKbqBLlyuwQ3DK40pDqkbT6slRHSZXnf3-eO9D_EOM8XHpasjRJ9DvadPLgc3G5B2Cb0PXcBYyw7Z9G4ouPt3bpOfpyc3x-fs8urs4vjHJesk15XJBrwxBrVG0WqnjelQCa88gm4kN2LGYdYIb3rhtMNmaqYzAb0C1ToF0Mttsr_uXeT0uMRS7UNa5vGdYoVojJLCqGZM8XWqy6mUjN4ucpi7_Go52JVvu_ZtR9925dvKkRFrpozZ1dv_mv8PfQJs3YZi</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zhu, Hai-Ping</creator><creator>Chen, Li</creator><creator>Chen, Hai-Yan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160801</creationdate><title>Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients</title><author>Zhu, Hai-Ping ; Chen, Li ; Chen, Hai-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Vibration</topic><topic>Vortices</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hai-Ping</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Chen, Hai-Yan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Hai-Ping</au><au>Chen, Li</au><au>Chen, Hai-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>85</volume><issue>3</issue><spage>1913</spage><epage>1918</epage><pages>1913-1918</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derived. The evolution behaviors of spatiotemporal Hermite–Gaussian vortex solitons in a diffraction decreasing system are investigated. Results indicate that the topological charge m changes the spiral structures of phase, and its value determines the number of the branch of the spiral phase structures. If the value of parameter n adds, spatiotemporal vortex solitons change their structures. Obviously, the layer of ring solitons along the vertical ( z -axis) direction is decided by n + 1 .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-016-2804-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2016-08, Vol.85 (3), p.1913-1918
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259432945
source Springer Link
subjects Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Mechanical Engineering
Original Paper
Schrodinger equation
Solitary waves
Vibration
Vortices
Waves
title Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hermite%E2%80%93Gaussian%20vortex%20solitons%20of%20a%20(3+1)-dimensional%20partially%20nonlocal%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20variable%20coefficients&rft.jtitle=Nonlinear%20dynamics&rft.au=Zhu,%20Hai-Ping&rft.date=2016-08-01&rft.volume=85&rft.issue=3&rft.spage=1913&rft.epage=1918&rft.pages=1913-1918&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-016-2804-3&rft_dat=%3Cproquest_cross%3E2259432945%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259432945&rft_id=info:pmid/&rfr_iscdi=true