Loading…
Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients
We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derive...
Saved in:
Published in: | Nonlinear dynamics 2016-08, Vol.85 (3), p.1913-1918 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3 |
container_end_page | 1918 |
container_issue | 3 |
container_start_page | 1913 |
container_title | Nonlinear dynamics |
container_volume | 85 |
creator | Zhu, Hai-Ping Chen, Li Chen, Hai-Yan |
description | We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derived. The evolution behaviors of spatiotemporal Hermite–Gaussian vortex solitons in a diffraction decreasing system are investigated. Results indicate that the topological charge
m
changes the spiral structures of phase, and its value determines the number of the branch of the spiral phase structures. If the value of parameter
n
adds, spatiotemporal vortex solitons change their structures. Obviously, the layer of ring solitons along the vertical (
z
-axis) direction is decided by
n
+
1
. |
doi_str_mv | 10.1007/s11071-016-2804-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259432945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259432945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3</originalsourceid><addsrcrecordid>eNp1kMtKZDEQhoOMYI_6AO4CbmaQaOVycjrLQbyB4EIH3IX0ORWNnE7aJO1lN7t5AN_FF_BN5kk8TQ_MalZVFP_3Q32E7HE45ADtUeEcWs6AayamoJjcIBPetJIJbW6_kAkYoRgYuN0iX0t5AAApYDohv88xz0PFP7_eztyylOAifUq54gstaQg1xUKTp45-kwf8O-vDHGMJKbqBLlyuwQ3DK40pDqkbT6slRHSZXnf3-eO9D_EOM8XHpasjRJ9DvadPLgc3G5B2Cb0PXcBYyw7Z9G4ouPt3bpOfpyc3x-fs8urs4vjHJesk15XJBrwxBrVG0WqnjelQCa88gm4kN2LGYdYIb3rhtMNmaqYzAb0C1ToF0Mttsr_uXeT0uMRS7UNa5vGdYoVojJLCqGZM8XWqy6mUjN4ucpi7_Go52JVvu_ZtR9925dvKkRFrpozZ1dv_mv8PfQJs3YZi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259432945</pqid></control><display><type>article</type><title>Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients</title><source>Springer Link</source><creator>Zhu, Hai-Ping ; Chen, Li ; Chen, Hai-Yan</creator><creatorcontrib>Zhu, Hai-Ping ; Chen, Li ; Chen, Hai-Yan</creatorcontrib><description>We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derived. The evolution behaviors of spatiotemporal Hermite–Gaussian vortex solitons in a diffraction decreasing system are investigated. Results indicate that the topological charge
m
changes the spiral structures of phase, and its value determines the number of the branch of the spiral phase structures. If the value of parameter
n
adds, spatiotemporal vortex solitons change their structures. Obviously, the layer of ring solitons along the vertical (
z
-axis) direction is decided by
n
+
1
.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-016-2804-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Original Paper ; Schrodinger equation ; Solitary waves ; Vibration ; Vortices ; Waves</subject><ispartof>Nonlinear dynamics, 2016-08, Vol.85 (3), p.1913-1918</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3</citedby><cites>FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Hai-Ping</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Chen, Hai-Yan</creatorcontrib><title>Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derived. The evolution behaviors of spatiotemporal Hermite–Gaussian vortex solitons in a diffraction decreasing system are investigated. Results indicate that the topological charge
m
changes the spiral structures of phase, and its value determines the number of the branch of the spiral phase structures. If the value of parameter
n
adds, spatiotemporal vortex solitons change their structures. Obviously, the layer of ring solitons along the vertical (
z
-axis) direction is decided by
n
+
1
.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Vibration</subject><subject>Vortices</subject><subject>Waves</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKZDEQhoOMYI_6AO4CbmaQaOVycjrLQbyB4EIH3IX0ORWNnE7aJO1lN7t5AN_FF_BN5kk8TQ_MalZVFP_3Q32E7HE45ADtUeEcWs6AayamoJjcIBPetJIJbW6_kAkYoRgYuN0iX0t5AAApYDohv88xz0PFP7_eztyylOAifUq54gstaQg1xUKTp45-kwf8O-vDHGMJKbqBLlyuwQ3DK40pDqkbT6slRHSZXnf3-eO9D_EOM8XHpasjRJ9DvadPLgc3G5B2Cb0PXcBYyw7Z9G4ouPt3bpOfpyc3x-fs8urs4vjHJesk15XJBrwxBrVG0WqnjelQCa88gm4kN2LGYdYIb3rhtMNmaqYzAb0C1ToF0Mttsr_uXeT0uMRS7UNa5vGdYoVojJLCqGZM8XWqy6mUjN4ucpi7_Go52JVvu_ZtR9925dvKkRFrpozZ1dv_mv8PfQJs3YZi</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zhu, Hai-Ping</creator><creator>Chen, Li</creator><creator>Chen, Hai-Yan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160801</creationdate><title>Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients</title><author>Zhu, Hai-Ping ; Chen, Li ; Chen, Hai-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Vibration</topic><topic>Vortices</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hai-Ping</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Chen, Hai-Yan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Hai-Ping</au><au>Chen, Li</au><au>Chen, Hai-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>85</volume><issue>3</issue><spage>1913</spage><epage>1918</epage><pages>1913-1918</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We consider the wave motion in a partially nonlocal and inhomogeneous nonlinear medium, and a (3+1)-dimensional nonlocal nonlinear Schrödinger equation with variable coefficients is used to govern this dynamics. Based on this model, spatiotemporal Hermite–Gaussian vortex soliton solutions are derived. The evolution behaviors of spatiotemporal Hermite–Gaussian vortex solitons in a diffraction decreasing system are investigated. Results indicate that the topological charge
m
changes the spiral structures of phase, and its value determines the number of the branch of the spiral phase structures. If the value of parameter
n
adds, spatiotemporal vortex solitons change their structures. Obviously, the layer of ring solitons along the vertical (
z
-axis) direction is decided by
n
+
1
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-016-2804-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2016-08, Vol.85 (3), p.1913-1918 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259432945 |
source | Springer Link |
subjects | Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Mechanical Engineering Original Paper Schrodinger equation Solitary waves Vibration Vortices Waves |
title | Hermite–Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation with variable coefficients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hermite%E2%80%93Gaussian%20vortex%20solitons%20of%20a%20(3+1)-dimensional%20partially%20nonlocal%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20variable%20coefficients&rft.jtitle=Nonlinear%20dynamics&rft.au=Zhu,%20Hai-Ping&rft.date=2016-08-01&rft.volume=85&rft.issue=3&rft.spage=1913&rft.epage=1918&rft.pages=1913-1918&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-016-2804-3&rft_dat=%3Cproquest_cross%3E2259432945%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-350f999e66e276a699ce42f4fe0653192b10b52f9d2a6ae5898b20d4047a400d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259432945&rft_id=info:pmid/&rfr_iscdi=true |