Loading…
W-symmetries of jump-diffusion Itô stochastic differential equations
In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable W ( t ). This work lead...
Saved in:
Published in: | Nonlinear dynamics 2017-12, Vol.90 (4), p.2869-2877 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163 |
---|---|
cites | cdi_FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163 |
container_end_page | 2877 |
container_issue | 4 |
container_start_page | 2869 |
container_title | Nonlinear dynamics |
container_volume | 90 |
creator | Nass, Aminu M. Fredericks, E. |
description | In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable
W
(
t
). This work leads to the derivation of the random time-change formula of Itô Brownian motion in Lie transformation context. |
doi_str_mv | 10.1007/s11071-017-3848-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259437149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259437149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EEqXwAGyRmA1nO_GfEVUFKlViAdHNcpMzJGqS1k6GvhdvwIuRKAwsMN1w3-93uo-Qawa3DEDdRcZAMQpMUaFTTfUJmbFMCcql2ZySGRieUjCwOScXMVYAIDjoGVm-0Xisa-xCiTFpfVL19Z4Wpfd9LNsmWXVfn0ns2vzDxa7Mk3GDAZuudLsED73rBipekjPvdhGvfuacvD4sXxZPdP38uFrcr2nOM6NpBgwzodU2z6XQ0kOaOymK1GmlHHdouHOomN8aVjiPEnWRSqk0Fkp4xaSYk5updx_aQ4-xs1Xbh2Y4aflwIRWKpeY_ihnJh8elHCk2UXloYwzo7T6UtQtHy8COTu3k1A5O7ejU6iHDp0wc2OYdw6_mP0PfnZ153Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259437149</pqid></control><display><type>article</type><title>W-symmetries of jump-diffusion Itô stochastic differential equations</title><source>Springer Nature</source><creator>Nass, Aminu M. ; Fredericks, E.</creator><creatorcontrib>Nass, Aminu M. ; Fredericks, E.</creatorcontrib><description>In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable
W
(
t
). This work leads to the derivation of the random time-change formula of Itô Brownian motion in Lie transformation context.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3848-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Brownian motion ; Classical Mechanics ; Control ; Differential equations ; Dynamical Systems ; Engineering ; Mathematical analysis ; Mechanical Engineering ; Original Paper ; Process variables ; Symmetry ; Vibration</subject><ispartof>Nonlinear dynamics, 2017-12, Vol.90 (4), p.2869-2877</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163</citedby><cites>FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nass, Aminu M.</creatorcontrib><creatorcontrib>Fredericks, E.</creatorcontrib><title>W-symmetries of jump-diffusion Itô stochastic differential equations</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable
W
(
t
). This work leads to the derivation of the random time-change formula of Itô Brownian motion in Lie transformation context.</description><subject>Automotive Engineering</subject><subject>Brownian motion</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Process variables</subject><subject>Symmetry</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EEqXwAGyRmA1nO_GfEVUFKlViAdHNcpMzJGqS1k6GvhdvwIuRKAwsMN1w3-93uo-Qawa3DEDdRcZAMQpMUaFTTfUJmbFMCcql2ZySGRieUjCwOScXMVYAIDjoGVm-0Xisa-xCiTFpfVL19Z4Wpfd9LNsmWXVfn0ns2vzDxa7Mk3GDAZuudLsED73rBipekjPvdhGvfuacvD4sXxZPdP38uFrcr2nOM6NpBgwzodU2z6XQ0kOaOymK1GmlHHdouHOomN8aVjiPEnWRSqk0Fkp4xaSYk5updx_aQ4-xs1Xbh2Y4aflwIRWKpeY_ihnJh8elHCk2UXloYwzo7T6UtQtHy8COTu3k1A5O7ejU6iHDp0wc2OYdw6_mP0PfnZ153Q</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Nass, Aminu M.</creator><creator>Fredericks, E.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171201</creationdate><title>W-symmetries of jump-diffusion Itô stochastic differential equations</title><author>Nass, Aminu M. ; Fredericks, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Brownian motion</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Process variables</topic><topic>Symmetry</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nass, Aminu M.</creatorcontrib><creatorcontrib>Fredericks, E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nass, Aminu M.</au><au>Fredericks, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W-symmetries of jump-diffusion Itô stochastic differential equations</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>90</volume><issue>4</issue><spage>2869</spage><epage>2877</epage><pages>2869-2877</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable
W
(
t
). This work leads to the derivation of the random time-change formula of Itô Brownian motion in Lie transformation context.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3848-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2017-12, Vol.90 (4), p.2869-2877 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259437149 |
source | Springer Nature |
subjects | Automotive Engineering Brownian motion Classical Mechanics Control Differential equations Dynamical Systems Engineering Mathematical analysis Mechanical Engineering Original Paper Process variables Symmetry Vibration |
title | W-symmetries of jump-diffusion Itô stochastic differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W-symmetries%20of%20jump-diffusion%20It%C3%B4%20stochastic%20differential%20equations&rft.jtitle=Nonlinear%20dynamics&rft.au=Nass,%20Aminu%20M.&rft.date=2017-12-01&rft.volume=90&rft.issue=4&rft.spage=2869&rft.epage=2877&rft.pages=2869-2877&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3848-8&rft_dat=%3Cproquest_cross%3E2259437149%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259437149&rft_id=info:pmid/&rfr_iscdi=true |