Loading…

W-symmetries of jump-diffusion Itô stochastic differential equations

In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable W ( t ). This work lead...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2017-12, Vol.90 (4), p.2869-2877
Main Authors: Nass, Aminu M., Fredericks, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163
cites cdi_FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163
container_end_page 2877
container_issue 4
container_start_page 2869
container_title Nonlinear dynamics
container_volume 90
creator Nass, Aminu M.
Fredericks, E.
description In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable W ( t ). This work leads to the derivation of the random time-change formula of Itô Brownian motion in Lie transformation context.
doi_str_mv 10.1007/s11071-017-3848-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259437149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259437149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EEqXwAGyRmA1nO_GfEVUFKlViAdHNcpMzJGqS1k6GvhdvwIuRKAwsMN1w3-93uo-Qawa3DEDdRcZAMQpMUaFTTfUJmbFMCcql2ZySGRieUjCwOScXMVYAIDjoGVm-0Xisa-xCiTFpfVL19Z4Wpfd9LNsmWXVfn0ns2vzDxa7Mk3GDAZuudLsED73rBipekjPvdhGvfuacvD4sXxZPdP38uFrcr2nOM6NpBgwzodU2z6XQ0kOaOymK1GmlHHdouHOomN8aVjiPEnWRSqk0Fkp4xaSYk5updx_aQ4-xs1Xbh2Y4aflwIRWKpeY_ihnJh8elHCk2UXloYwzo7T6UtQtHy8COTu3k1A5O7ejU6iHDp0wc2OYdw6_mP0PfnZ153Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259437149</pqid></control><display><type>article</type><title>W-symmetries of jump-diffusion Itô stochastic differential equations</title><source>Springer Nature</source><creator>Nass, Aminu M. ; Fredericks, E.</creator><creatorcontrib>Nass, Aminu M. ; Fredericks, E.</creatorcontrib><description>In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable W ( t ). This work leads to the derivation of the random time-change formula of Itô Brownian motion in Lie transformation context.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3848-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Brownian motion ; Classical Mechanics ; Control ; Differential equations ; Dynamical Systems ; Engineering ; Mathematical analysis ; Mechanical Engineering ; Original Paper ; Process variables ; Symmetry ; Vibration</subject><ispartof>Nonlinear dynamics, 2017-12, Vol.90 (4), p.2869-2877</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163</citedby><cites>FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nass, Aminu M.</creatorcontrib><creatorcontrib>Fredericks, E.</creatorcontrib><title>W-symmetries of jump-diffusion Itô stochastic differential equations</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable W ( t ). This work leads to the derivation of the random time-change formula of Itô Brownian motion in Lie transformation context.</description><subject>Automotive Engineering</subject><subject>Brownian motion</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Process variables</subject><subject>Symmetry</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EEqXwAGyRmA1nO_GfEVUFKlViAdHNcpMzJGqS1k6GvhdvwIuRKAwsMN1w3-93uo-Qawa3DEDdRcZAMQpMUaFTTfUJmbFMCcql2ZySGRieUjCwOScXMVYAIDjoGVm-0Xisa-xCiTFpfVL19Z4Wpfd9LNsmWXVfn0ns2vzDxa7Mk3GDAZuudLsED73rBipekjPvdhGvfuacvD4sXxZPdP38uFrcr2nOM6NpBgwzodU2z6XQ0kOaOymK1GmlHHdouHOomN8aVjiPEnWRSqk0Fkp4xaSYk5updx_aQ4-xs1Xbh2Y4aflwIRWKpeY_ihnJh8elHCk2UXloYwzo7T6UtQtHy8COTu3k1A5O7ejU6iHDp0wc2OYdw6_mP0PfnZ153Q</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Nass, Aminu M.</creator><creator>Fredericks, E.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171201</creationdate><title>W-symmetries of jump-diffusion Itô stochastic differential equations</title><author>Nass, Aminu M. ; Fredericks, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Brownian motion</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Process variables</topic><topic>Symmetry</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nass, Aminu M.</creatorcontrib><creatorcontrib>Fredericks, E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nass, Aminu M.</au><au>Fredericks, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W-symmetries of jump-diffusion Itô stochastic differential equations</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>90</volume><issue>4</issue><spage>2869</spage><epage>2877</epage><pages>2869-2877</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this article, we discuss Lie point symmetry of stochastic differential equations driven by Wiener and Poisson processes. The symmetry is obtained by considering infinitesimals involving not only spatial and temporal variables but also that of vector Wiener process variable W ( t ). This work leads to the derivation of the random time-change formula of Itô Brownian motion in Lie transformation context.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3848-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2017-12, Vol.90 (4), p.2869-2877
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259437149
source Springer Nature
subjects Automotive Engineering
Brownian motion
Classical Mechanics
Control
Differential equations
Dynamical Systems
Engineering
Mathematical analysis
Mechanical Engineering
Original Paper
Process variables
Symmetry
Vibration
title W-symmetries of jump-diffusion Itô stochastic differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W-symmetries%20of%20jump-diffusion%20It%C3%B4%20stochastic%20differential%20equations&rft.jtitle=Nonlinear%20dynamics&rft.au=Nass,%20Aminu%20M.&rft.date=2017-12-01&rft.volume=90&rft.issue=4&rft.spage=2869&rft.epage=2877&rft.pages=2869-2877&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3848-8&rft_dat=%3Cproquest_cross%3E2259437149%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2598-501e5387bcc6386f04ca63d4a877a2ae92aae71fb91dafe6e8d46678ed73f7163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259437149&rft_id=info:pmid/&rfr_iscdi=true