Loading…

Stability analysis of coexistence of three species prey–predator model

In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2015-07, Vol.81 (1-2), p.373-382
Main Authors: Panja, Prabir, Mondal, Shyamal Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793
cites cdi_FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793
container_end_page 382
container_issue 1-2
container_start_page 373
container_title Nonlinear dynamics
container_volume 81
creator Panja, Prabir
Mondal, Shyamal Kumar
description In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this paper, Holling type II functional response function has been considered to analysis of the proposed model. All equilibriums of the proposed system are determined, and the behavior of the system is also investigated near the positive equilibrium point. At the end, local stability of the system is analyzed by numerical illustrations.
doi_str_mv 10.1007/s11071-015-1997-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259460957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259460957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3SSbJLNUYpaoeDBHnoLaXaiW7bdNdmCe_MdfEOfpFtW8OTpZ4b__5n5CLlmcMsA9F1iDDSjwCRlxmjKTsiESS0oV2Z1SiZgeE7BwOqcXKS0AQDBoZiQ-Wvn1lVddX3mdq7uU5WyJmS-wc8qdbjzeBy794iYpRZ9hSlrI_Y_X9-DlK5rYrZtSqwvyVlwdcKrX52S5ePDcjani5en59n9gnpRqI6aoDR36KHkhVhLZFKGQpVFrpxWQYAJ4Eoh17IISpS54xz5sFOIXnNtxJTcjLVtbD72mDq7afZxuDxZzqXJFZjh6ylho8vHJqWIwbax2rrYWwb2yMuOvOzAyx55WTZk-JhJg3f3hvGv-f_QAUYDbtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259460957</pqid></control><display><type>article</type><title>Stability analysis of coexistence of three species prey–predator model</title><source>Springer Nature</source><creator>Panja, Prabir ; Mondal, Shyamal Kumar</creator><creatorcontrib>Panja, Prabir ; Mondal, Shyamal Kumar</creatorcontrib><description>In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this paper, Holling type II functional response function has been considered to analysis of the proposed model. All equilibriums of the proposed system are determined, and the behavior of the system is also investigated near the positive equilibrium point. At the end, local stability of the system is analyzed by numerical illustrations.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-1997-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Fisheries ; Mechanical Engineering ; Original Paper ; Phytoplankton ; Response functions ; Stability analysis ; Vibration ; Zooplankton</subject><ispartof>Nonlinear dynamics, 2015-07, Vol.81 (1-2), p.373-382</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793</citedby><cites>FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Panja, Prabir</creatorcontrib><creatorcontrib>Mondal, Shyamal Kumar</creatorcontrib><title>Stability analysis of coexistence of three species prey–predator model</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this paper, Holling type II functional response function has been considered to analysis of the proposed model. All equilibriums of the proposed system are determined, and the behavior of the system is also investigated near the positive equilibrium point. At the end, local stability of the system is analyzed by numerical illustrations.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fisheries</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Phytoplankton</subject><subject>Response functions</subject><subject>Stability analysis</subject><subject>Vibration</subject><subject>Zooplankton</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3SSbJLNUYpaoeDBHnoLaXaiW7bdNdmCe_MdfEOfpFtW8OTpZ4b__5n5CLlmcMsA9F1iDDSjwCRlxmjKTsiESS0oV2Z1SiZgeE7BwOqcXKS0AQDBoZiQ-Wvn1lVddX3mdq7uU5WyJmS-wc8qdbjzeBy794iYpRZ9hSlrI_Y_X9-DlK5rYrZtSqwvyVlwdcKrX52S5ePDcjani5en59n9gnpRqI6aoDR36KHkhVhLZFKGQpVFrpxWQYAJ4Eoh17IISpS54xz5sFOIXnNtxJTcjLVtbD72mDq7afZxuDxZzqXJFZjh6ylho8vHJqWIwbax2rrYWwb2yMuOvOzAyx55WTZk-JhJg3f3hvGv-f_QAUYDbtg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Panja, Prabir</creator><creator>Mondal, Shyamal Kumar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150701</creationdate><title>Stability analysis of coexistence of three species prey–predator model</title><author>Panja, Prabir ; Mondal, Shyamal Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fisheries</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Phytoplankton</topic><topic>Response functions</topic><topic>Stability analysis</topic><topic>Vibration</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panja, Prabir</creatorcontrib><creatorcontrib>Mondal, Shyamal Kumar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panja, Prabir</au><au>Mondal, Shyamal Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of coexistence of three species prey–predator model</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>81</volume><issue>1-2</issue><spage>373</spage><epage>382</epage><pages>373-382</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this paper, Holling type II functional response function has been considered to analysis of the proposed model. All equilibriums of the proposed system are determined, and the behavior of the system is also investigated near the positive equilibrium point. At the end, local stability of the system is analyzed by numerical illustrations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-1997-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2015-07, Vol.81 (1-2), p.373-382
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259460957
source Springer Nature
subjects Automotive Engineering
Bifurcations
Classical Mechanics
Control
Dynamical Systems
Engineering
Fisheries
Mechanical Engineering
Original Paper
Phytoplankton
Response functions
Stability analysis
Vibration
Zooplankton
title Stability analysis of coexistence of three species prey–predator model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20coexistence%20of%20three%20species%20prey%E2%80%93predator%20model&rft.jtitle=Nonlinear%20dynamics&rft.au=Panja,%20Prabir&rft.date=2015-07-01&rft.volume=81&rft.issue=1-2&rft.spage=373&rft.epage=382&rft.pages=373-382&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-1997-1&rft_dat=%3Cproquest_cross%3E2259460957%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259460957&rft_id=info:pmid/&rfr_iscdi=true