Loading…
Stability analysis of coexistence of three species prey–predator model
In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this...
Saved in:
Published in: | Nonlinear dynamics 2015-07, Vol.81 (1-2), p.373-382 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793 |
container_end_page | 382 |
container_issue | 1-2 |
container_start_page | 373 |
container_title | Nonlinear dynamics |
container_volume | 81 |
creator | Panja, Prabir Mondal, Shyamal Kumar |
description | In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this paper, Holling type II functional response function has been considered to analysis of the proposed model. All equilibriums of the proposed system are determined, and the behavior of the system is also investigated near the positive equilibrium point. At the end, local stability of the system is analyzed by numerical illustrations. |
doi_str_mv | 10.1007/s11071-015-1997-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259460957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259460957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3SSbJLNUYpaoeDBHnoLaXaiW7bdNdmCe_MdfEOfpFtW8OTpZ4b__5n5CLlmcMsA9F1iDDSjwCRlxmjKTsiESS0oV2Z1SiZgeE7BwOqcXKS0AQDBoZiQ-Wvn1lVddX3mdq7uU5WyJmS-wc8qdbjzeBy794iYpRZ9hSlrI_Y_X9-DlK5rYrZtSqwvyVlwdcKrX52S5ePDcjani5en59n9gnpRqI6aoDR36KHkhVhLZFKGQpVFrpxWQYAJ4Eoh17IISpS54xz5sFOIXnNtxJTcjLVtbD72mDq7afZxuDxZzqXJFZjh6ylho8vHJqWIwbax2rrYWwb2yMuOvOzAyx55WTZk-JhJg3f3hvGv-f_QAUYDbtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259460957</pqid></control><display><type>article</type><title>Stability analysis of coexistence of three species prey–predator model</title><source>Springer Nature</source><creator>Panja, Prabir ; Mondal, Shyamal Kumar</creator><creatorcontrib>Panja, Prabir ; Mondal, Shyamal Kumar</creatorcontrib><description>In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this paper, Holling type II functional response function has been considered to analysis of the proposed model. All equilibriums of the proposed system are determined, and the behavior of the system is also investigated near the positive equilibrium point. At the end, local stability of the system is analyzed by numerical illustrations.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-1997-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Fisheries ; Mechanical Engineering ; Original Paper ; Phytoplankton ; Response functions ; Stability analysis ; Vibration ; Zooplankton</subject><ispartof>Nonlinear dynamics, 2015-07, Vol.81 (1-2), p.373-382</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793</citedby><cites>FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Panja, Prabir</creatorcontrib><creatorcontrib>Mondal, Shyamal Kumar</creatorcontrib><title>Stability analysis of coexistence of three species prey–predator model</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this paper, Holling type II functional response function has been considered to analysis of the proposed model. All equilibriums of the proposed system are determined, and the behavior of the system is also investigated near the positive equilibrium point. At the end, local stability of the system is analyzed by numerical illustrations.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fisheries</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Phytoplankton</subject><subject>Response functions</subject><subject>Stability analysis</subject><subject>Vibration</subject><subject>Zooplankton</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3SSbJLNUYpaoeDBHnoLaXaiW7bdNdmCe_MdfEOfpFtW8OTpZ4b__5n5CLlmcMsA9F1iDDSjwCRlxmjKTsiESS0oV2Z1SiZgeE7BwOqcXKS0AQDBoZiQ-Wvn1lVddX3mdq7uU5WyJmS-wc8qdbjzeBy794iYpRZ9hSlrI_Y_X9-DlK5rYrZtSqwvyVlwdcKrX52S5ePDcjani5en59n9gnpRqI6aoDR36KHkhVhLZFKGQpVFrpxWQYAJ4Eoh17IISpS54xz5sFOIXnNtxJTcjLVtbD72mDq7afZxuDxZzqXJFZjh6ylho8vHJqWIwbax2rrYWwb2yMuOvOzAyx55WTZk-JhJg3f3hvGv-f_QAUYDbtg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Panja, Prabir</creator><creator>Mondal, Shyamal Kumar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150701</creationdate><title>Stability analysis of coexistence of three species prey–predator model</title><author>Panja, Prabir ; Mondal, Shyamal Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fisheries</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Phytoplankton</topic><topic>Response functions</topic><topic>Stability analysis</topic><topic>Vibration</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panja, Prabir</creatorcontrib><creatorcontrib>Mondal, Shyamal Kumar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panja, Prabir</au><au>Mondal, Shyamal Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of coexistence of three species prey–predator model</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>81</volume><issue>1-2</issue><spage>373</spage><epage>382</epage><pages>373-382</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we have proposed a prey–predator model for the study of dynamical behaviors of three species such as toxin-producing Phytoplankton, Zooplankton and Fish in a fishery system. The stability condition, existence condition of equilibrium and bifurcation have also been established. In this paper, Holling type II functional response function has been considered to analysis of the proposed model. All equilibriums of the proposed system are determined, and the behavior of the system is also investigated near the positive equilibrium point. At the end, local stability of the system is analyzed by numerical illustrations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-1997-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2015-07, Vol.81 (1-2), p.373-382 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259460957 |
source | Springer Nature |
subjects | Automotive Engineering Bifurcations Classical Mechanics Control Dynamical Systems Engineering Fisheries Mechanical Engineering Original Paper Phytoplankton Response functions Stability analysis Vibration Zooplankton |
title | Stability analysis of coexistence of three species prey–predator model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20coexistence%20of%20three%20species%20prey%E2%80%93predator%20model&rft.jtitle=Nonlinear%20dynamics&rft.au=Panja,%20Prabir&rft.date=2015-07-01&rft.volume=81&rft.issue=1-2&rft.spage=373&rft.epage=382&rft.pages=373-382&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-1997-1&rft_dat=%3Cproquest_cross%3E2259460957%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-9f672aec0d283b5e155f86d846a76f309f0ad35b58f63d4a22e29f06eec72793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259460957&rft_id=info:pmid/&rfr_iscdi=true |