Loading…

Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars

Soybean cyst nematode (SCN) ( Heterodera glycines Ichinohe) is a highly recalcitrant endoparasite of soybean roots, causing more yield loss than any other pest. To identify quantitative trait loci (QTL) controlling resistance to SCN (HG type 2.5.7, race 1), a genome-wide association study (GWAS) was...

Full description

Saved in:
Bibliographic Details
Published in:Molecular breeding 2017-05, Vol.37 (5), p.1-10, Article 60
Main Authors: Zhang, Jun, Wen, Zixiang, Li, Wei, Zhang, Yanwei, Zhang, Lifeng, Dai, Haiying, Wang, Dechun, Xu, Ran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soybean cyst nematode (SCN) ( Heterodera glycines Ichinohe) is a highly recalcitrant endoparasite of soybean roots, causing more yield loss than any other pest. To identify quantitative trait loci (QTL) controlling resistance to SCN (HG type 2.5.7, race 1), a genome-wide association study (GWAS) was performed. The association panel, consisting of 120 Chinese soybean cultivars, was genotyped with 7189 single nucleotide polymorphism (SNPs). A total of 6204 SNPs with minor allele frequency >0.05 were used to estimate linkage disequilibrium (LD) and population structure. The mean level of LD measured by r 2 declined very rapidly to half its maximum value (0.51) at 220 kb. The overall population structure was approximately coincident with geographic origin. The GWAS results identified 13 SNPs in 7 different genomic regions significantly associated with SCN resistance. Of these, three SNPs were localized in previously mapped QTL intervals, including rhg1 and Rhg4 . The GWAS results also detected 10 SNPs in 5 different genomic regions associated with SCN resistance. The identified loci explained an average of 95.5% of the phenotypic variance. The proportion of phenotypic variance was due to additive genetic variance of the validated SNPs. The present study identified multiple new loci and refined chromosomal regions of known loci associated with SCN resistance. The loci and trait-associated SNPs identified in this study can be used for developing soybean cultivars with durable resistance against SCN.
ISSN:1380-3743
1572-9788
DOI:10.1007/s11032-017-0665-1