Loading…
Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor
Camphor, C 10 H 16 O, as a natural and renewable carbon precursor, can be pyrolyzed to pyrolytic carbon (PyC; pyrocarbon) with significant industrial applications from conducting electrodes to biomedical implant coatings. Here, a simple but controllable chemical vapor deposition setup, operating at...
Saved in:
Published in: | Journal of materials science 2018, Vol.53 (2), p.959-976 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-8c81d5775c9a3613d105bc05a58b284a5fb4b124c9ffcc8b9e64b570d13344813 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-8c81d5775c9a3613d105bc05a58b284a5fb4b124c9ffcc8b9e64b570d13344813 |
container_end_page | 976 |
container_issue | 2 |
container_start_page | 959 |
container_title | Journal of materials science |
container_volume | 53 |
creator | Sheikholeslami, Zeinab Sadat Yousefi, Mohammad Imani, Mohammad Joupari, Morteza Daliri |
description | Camphor, C
10
H
16
O, as a natural and renewable carbon precursor, can be pyrolyzed to pyrolytic carbon (PyC; pyrocarbon) with significant industrial applications from conducting electrodes to biomedical implant coatings. Here, a simple but controllable chemical vapor deposition setup, operating at low temperatures (650–800 °C) in nitrogen atmosphere at ambient pressure in the absence of catalyst, was used. According to XRD and Raman spectroscopy, nanocrystalline thin PyC films were obtained at this temperature range without a significant change in
L
c
and
d
002
values. When the deposition temperature increased from 700 to 800 °C,
L
a
and crystallinity percentage values were increased from 2.40 nm and 73.16% to 4.15 nm to 87.58%, respectively. SEM and AFM analyses showed smooth (
Ra
≈ 1 nm) and shiny surface for the thin films with 10–500-nm range thickness. The films were hydrophilic on surface (water contact angle ≈ 72.45°) with surface free energy of ≈ 41 mN/m. Young’s modulus, hardness and friction coefficient of the thin PyC coatings were calculated using nanoindentation technique as ≈ 29.9, 3.5 GPa and 0.09, respectively. Resistivity of the films was 2.21 × 10
−5
Ωm, so it can be anticipated to repel the blood cells. Cytocompatibility screening in direct contact mode and in vitro biocompatibility findings supported cyto- and hemocompatible properties for the PyC specimens synthesized from camphor. |
doi_str_mv | 10.1007/s10853-017-1590-8 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259612585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511804892</galeid><sourcerecordid>A511804892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-8c81d5775c9a3613d105bc05a58b284a5fb4b124c9ffcc8b9e64b570d13344813</originalsourceid><addsrcrecordid>eNp9kVFr1TAUx4soeJ1-AN8CPglm5qRJmz6OoXNwQdDtOaRp2pvRNvUknbuwD28u9WF7UPIQyPn9zgnnXxTvgZ0DY_XnCEzJkjKoKciGUfWi2IGsSyoUK18WO8Y4p1xU8Lp4E-MdY0zWHHbF4z78pslNi0OTVnSfiD24yVszknuzBCSdW0L0yYeZhJ6kg5_paI4OyXLEMB6Tt8QabHPZBpP8PMSsoL93HekxTLk4LYfcx0RiyIDOzWRBZ1eMAd8Wr3ozRvfu731W3H79cnP5je6_X11fXuypFVAnqqyCTta1tI0pKyg7YLK1TBqpWq6EkX0rWuDCNn1vrWobV4lW1qyDshRCQXlWfNj6Lhh-rS4mfRdWnPNIzblsKuAyL-8_FDSyklJxxjJ1vlGDGZ32cx8SGptPd1pbmF3v8_uFBFBMqIZn4eMzITPJPaTBrDHq658_nrOwsRZDjOh6vaCfDB41MH3KWW8565yzPuWsVXb45sTMzoPDJ9_-p_QHt5aqQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259612585</pqid></control><display><type>article</type><title>Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor</title><source>Springer Link</source><creator>Sheikholeslami, Zeinab Sadat ; Yousefi, Mohammad ; Imani, Mohammad ; Joupari, Morteza Daliri</creator><creatorcontrib>Sheikholeslami, Zeinab Sadat ; Yousefi, Mohammad ; Imani, Mohammad ; Joupari, Morteza Daliri</creatorcontrib><description>Camphor, C
10
H
16
O, as a natural and renewable carbon precursor, can be pyrolyzed to pyrolytic carbon (PyC; pyrocarbon) with significant industrial applications from conducting electrodes to biomedical implant coatings. Here, a simple but controllable chemical vapor deposition setup, operating at low temperatures (650–800 °C) in nitrogen atmosphere at ambient pressure in the absence of catalyst, was used. According to XRD and Raman spectroscopy, nanocrystalline thin PyC films were obtained at this temperature range without a significant change in
L
c
and
d
002
values. When the deposition temperature increased from 700 to 800 °C,
L
a
and crystallinity percentage values were increased from 2.40 nm and 73.16% to 4.15 nm to 87.58%, respectively. SEM and AFM analyses showed smooth (
Ra
≈ 1 nm) and shiny surface for the thin films with 10–500-nm range thickness. The films were hydrophilic on surface (water contact angle ≈ 72.45°) with surface free energy of ≈ 41 mN/m. Young’s modulus, hardness and friction coefficient of the thin PyC coatings were calculated using nanoindentation technique as ≈ 29.9, 3.5 GPa and 0.09, respectively. Resistivity of the films was 2.21 × 10
−5
Ωm, so it can be anticipated to repel the blood cells. Cytocompatibility screening in direct contact mode and in vitro biocompatibility findings supported cyto- and hemocompatible properties for the PyC specimens synthesized from camphor.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1590-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biocompatibility ; Biomaterials ; Blood cells ; Camphor ; Carbon ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Classical Mechanics ; Coated electrodes ; Coatings ; Coefficient of friction ; Contact angle ; Crystallography and Scattering Methods ; Free energy ; Industrial applications ; Low temperature ; Materials Science ; Modulus of elasticity ; Nanoindentation ; Organic chemistry ; Polymer Sciences ; Precursors ; Pressure ; Raman spectroscopy ; Solid Mechanics ; Temperature ; Thickness ; Thin films</subject><ispartof>Journal of materials science, 2018, Vol.53 (2), p.959-976</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-8c81d5775c9a3613d105bc05a58b284a5fb4b124c9ffcc8b9e64b570d13344813</citedby><cites>FETCH-LOGICAL-c417t-8c81d5775c9a3613d105bc05a58b284a5fb4b124c9ffcc8b9e64b570d13344813</cites><orcidid>0000-0001-9465-7983 ; 0000-0002-6030-8280 ; 0000-0001-5154-0881 ; 0000-0001-6625-8854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sheikholeslami, Zeinab Sadat</creatorcontrib><creatorcontrib>Yousefi, Mohammad</creatorcontrib><creatorcontrib>Imani, Mohammad</creatorcontrib><creatorcontrib>Joupari, Morteza Daliri</creatorcontrib><title>Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Camphor, C
10
H
16
O, as a natural and renewable carbon precursor, can be pyrolyzed to pyrolytic carbon (PyC; pyrocarbon) with significant industrial applications from conducting electrodes to biomedical implant coatings. Here, a simple but controllable chemical vapor deposition setup, operating at low temperatures (650–800 °C) in nitrogen atmosphere at ambient pressure in the absence of catalyst, was used. According to XRD and Raman spectroscopy, nanocrystalline thin PyC films were obtained at this temperature range without a significant change in
L
c
and
d
002
values. When the deposition temperature increased from 700 to 800 °C,
L
a
and crystallinity percentage values were increased from 2.40 nm and 73.16% to 4.15 nm to 87.58%, respectively. SEM and AFM analyses showed smooth (
Ra
≈ 1 nm) and shiny surface for the thin films with 10–500-nm range thickness. The films were hydrophilic on surface (water contact angle ≈ 72.45°) with surface free energy of ≈ 41 mN/m. Young’s modulus, hardness and friction coefficient of the thin PyC coatings were calculated using nanoindentation technique as ≈ 29.9, 3.5 GPa and 0.09, respectively. Resistivity of the films was 2.21 × 10
−5
Ωm, so it can be anticipated to repel the blood cells. Cytocompatibility screening in direct contact mode and in vitro biocompatibility findings supported cyto- and hemocompatible properties for the PyC specimens synthesized from camphor.</description><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Blood cells</subject><subject>Camphor</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coated electrodes</subject><subject>Coatings</subject><subject>Coefficient of friction</subject><subject>Contact angle</subject><subject>Crystallography and Scattering Methods</subject><subject>Free energy</subject><subject>Industrial applications</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Organic chemistry</subject><subject>Polymer Sciences</subject><subject>Precursors</subject><subject>Pressure</subject><subject>Raman spectroscopy</subject><subject>Solid Mechanics</subject><subject>Temperature</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kVFr1TAUx4soeJ1-AN8CPglm5qRJmz6OoXNwQdDtOaRp2pvRNvUknbuwD28u9WF7UPIQyPn9zgnnXxTvgZ0DY_XnCEzJkjKoKciGUfWi2IGsSyoUK18WO8Y4p1xU8Lp4E-MdY0zWHHbF4z78pslNi0OTVnSfiD24yVszknuzBCSdW0L0yYeZhJ6kg5_paI4OyXLEMB6Tt8QabHPZBpP8PMSsoL93HekxTLk4LYfcx0RiyIDOzWRBZ1eMAd8Wr3ozRvfu731W3H79cnP5je6_X11fXuypFVAnqqyCTta1tI0pKyg7YLK1TBqpWq6EkX0rWuDCNn1vrWobV4lW1qyDshRCQXlWfNj6Lhh-rS4mfRdWnPNIzblsKuAyL-8_FDSyklJxxjJ1vlGDGZ32cx8SGptPd1pbmF3v8_uFBFBMqIZn4eMzITPJPaTBrDHq658_nrOwsRZDjOh6vaCfDB41MH3KWW8565yzPuWsVXb45sTMzoPDJ9_-p_QHt5aqQw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Sheikholeslami, Zeinab Sadat</creator><creator>Yousefi, Mohammad</creator><creator>Imani, Mohammad</creator><creator>Joupari, Morteza Daliri</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9465-7983</orcidid><orcidid>https://orcid.org/0000-0002-6030-8280</orcidid><orcidid>https://orcid.org/0000-0001-5154-0881</orcidid><orcidid>https://orcid.org/0000-0001-6625-8854</orcidid></search><sort><creationdate>2018</creationdate><title>Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor</title><author>Sheikholeslami, Zeinab Sadat ; Yousefi, Mohammad ; Imani, Mohammad ; Joupari, Morteza Daliri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-8c81d5775c9a3613d105bc05a58b284a5fb4b124c9ffcc8b9e64b570d13344813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Blood cells</topic><topic>Camphor</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coated electrodes</topic><topic>Coatings</topic><topic>Coefficient of friction</topic><topic>Contact angle</topic><topic>Crystallography and Scattering Methods</topic><topic>Free energy</topic><topic>Industrial applications</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Organic chemistry</topic><topic>Polymer Sciences</topic><topic>Precursors</topic><topic>Pressure</topic><topic>Raman spectroscopy</topic><topic>Solid Mechanics</topic><topic>Temperature</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheikholeslami, Zeinab Sadat</creatorcontrib><creatorcontrib>Yousefi, Mohammad</creatorcontrib><creatorcontrib>Imani, Mohammad</creatorcontrib><creatorcontrib>Joupari, Morteza Daliri</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheikholeslami, Zeinab Sadat</au><au>Yousefi, Mohammad</au><au>Imani, Mohammad</au><au>Joupari, Morteza Daliri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018</date><risdate>2018</risdate><volume>53</volume><issue>2</issue><spage>959</spage><epage>976</epage><pages>959-976</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Camphor, C
10
H
16
O, as a natural and renewable carbon precursor, can be pyrolyzed to pyrolytic carbon (PyC; pyrocarbon) with significant industrial applications from conducting electrodes to biomedical implant coatings. Here, a simple but controllable chemical vapor deposition setup, operating at low temperatures (650–800 °C) in nitrogen atmosphere at ambient pressure in the absence of catalyst, was used. According to XRD and Raman spectroscopy, nanocrystalline thin PyC films were obtained at this temperature range without a significant change in
L
c
and
d
002
values. When the deposition temperature increased from 700 to 800 °C,
L
a
and crystallinity percentage values were increased from 2.40 nm and 73.16% to 4.15 nm to 87.58%, respectively. SEM and AFM analyses showed smooth (
Ra
≈ 1 nm) and shiny surface for the thin films with 10–500-nm range thickness. The films were hydrophilic on surface (water contact angle ≈ 72.45°) with surface free energy of ≈ 41 mN/m. Young’s modulus, hardness and friction coefficient of the thin PyC coatings were calculated using nanoindentation technique as ≈ 29.9, 3.5 GPa and 0.09, respectively. Resistivity of the films was 2.21 × 10
−5
Ωm, so it can be anticipated to repel the blood cells. Cytocompatibility screening in direct contact mode and in vitro biocompatibility findings supported cyto- and hemocompatible properties for the PyC specimens synthesized from camphor.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1590-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9465-7983</orcidid><orcidid>https://orcid.org/0000-0002-6030-8280</orcidid><orcidid>https://orcid.org/0000-0001-5154-0881</orcidid><orcidid>https://orcid.org/0000-0001-6625-8854</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2018, Vol.53 (2), p.959-976 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259612585 |
source | Springer Link |
subjects | Biocompatibility Biomaterials Blood cells Camphor Carbon Characterization and Evaluation of Materials Chemical vapor deposition Chemistry and Materials Science Classical Mechanics Coated electrodes Coatings Coefficient of friction Contact angle Crystallography and Scattering Methods Free energy Industrial applications Low temperature Materials Science Modulus of elasticity Nanoindentation Organic chemistry Polymer Sciences Precursors Pressure Raman spectroscopy Solid Mechanics Temperature Thickness Thin films |
title | Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature,%20chemical%20vapor%20deposition%20of%20thin-layer%20pyrolytic%20carbon%20coatings%20derived%20from%20camphor%20as%20a%20green%20precursor&rft.jtitle=Journal%20of%20materials%20science&rft.au=Sheikholeslami,%20Zeinab%20Sadat&rft.date=2018&rft.volume=53&rft.issue=2&rft.spage=959&rft.epage=976&rft.pages=959-976&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1590-8&rft_dat=%3Cgale_proqu%3EA511804892%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-8c81d5775c9a3613d105bc05a58b284a5fb4b124c9ffcc8b9e64b570d13344813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259612585&rft_id=info:pmid/&rft_galeid=A511804892&rfr_iscdi=true |