Loading…

Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine

Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe 3 O 4 )-loaded graphene oxide (GO) nanohybrid (m-Fe 3 O 4 /GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe 3 O 4 /GO hybrid was characterize...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2019-03, Vol.54 (5), p.4073-4088
Main Authors: Vinodha, G., Shima, P. D., Cindrella, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223
cites cdi_FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223
container_end_page 4088
container_issue 5
container_start_page 4073
container_title Journal of materials science
container_volume 54
creator Vinodha, G.
Shima, P. D.
Cindrella, L.
description Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe 3 O 4 )-loaded graphene oxide (GO) nanohybrid (m-Fe 3 O 4 /GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe 3 O 4 /GO hybrid was characterized by transmission electron microscopy, powder X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller surface area and pore size analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. Electrochemical behaviour of the m-Fe 3 O 4 /GO was explored using electrochemical impedance spectroscopy, cyclic voltammetry and by amperometric responses. The results reveal that m-Fe 3 O 4 /GO hybrid-modified glassy carbon electrode (GCE) holds promising detection capability for HDZ with better features of the lower limit of detection (LOD), high sensitivity and extensive linear detection range compared to the bare GCE and GO-modified GCE. The values of LOD, sensitivity and linear detection range for m-Fe 3 O 4 /GO/GCE were 59 nM, 27 µA µM −1  cm −2 and 1–4400 µM, respectively. The high electron transfer rate and larger surface area of GO together with the mesoporous nature of Fe 3 O 4 nanoparticles are responsible for the enhanced electrocatalytic activity of m-Fe 3 O 4 /GO-based electrochemical sensor. Most importantly, m-Fe 3 O 4 /GO/GCE-based electrochemical sensor developed in the present study exhibited excellent stability, reproducibility, reusability and anti-interference ability towards the detection of HDZ. The present study reveals that m-Fe 3 O 4 /GO is a promising material in developing highly efficient electrochemical sensors and biosensors.
doi_str_mv 10.1007/s10853-018-3145-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259616962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A566660714</galeid><sourcerecordid>A566660714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1podu0P6A3QU89KB1JtmUfQ-hHICHQj7OQpZFXwSu5khaS_fXV4kLJodJBMDyPZoa3ad4zuGQA8lNmMHSCAhuoYG1HTy-aHeukoO0A4mWzA-Cc8rZnr5s3OT8AQCc52zWnO8xxjSkeMznoOWDxBUnQIa46FW8WpBZNTLqgJXPS6x4Dkvjo7UblPWLJxMVE0DlvPIZCcEFTUjR7PHijF2Kx1IKPgURH9k826ZMP-LZ55fSS8d3f96L59eXzz-tv9Pb-68311S01YhgL7Vs7iZEBagnT1EsElCO3zrQCrHDOCRxRt1IAm_RgYOqmHsQopDC2NZyLi-bD9u-a4u8j5qIe4jGF2lJx3o0968f-TF1u1KwXVD64WJI29drzEjGg87V-1fX1gGRtFT4-EypT8LHM-pizuvnx_TnLNtakmHNCp9bkDzo9KQbqnJ_a8lM1P3XOT52qwzcnVzbMmP6N_X_pD9tAoG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259616962</pqid></control><display><type>article</type><title>Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine</title><source>Springer Nature</source><creator>Vinodha, G. ; Shima, P. D. ; Cindrella, L.</creator><creatorcontrib>Vinodha, G. ; Shima, P. D. ; Cindrella, L.</creatorcontrib><description>Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe 3 O 4 )-loaded graphene oxide (GO) nanohybrid (m-Fe 3 O 4 /GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe 3 O 4 /GO hybrid was characterized by transmission electron microscopy, powder X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller surface area and pore size analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. Electrochemical behaviour of the m-Fe 3 O 4 /GO was explored using electrochemical impedance spectroscopy, cyclic voltammetry and by amperometric responses. The results reveal that m-Fe 3 O 4 /GO hybrid-modified glassy carbon electrode (GCE) holds promising detection capability for HDZ with better features of the lower limit of detection (LOD), high sensitivity and extensive linear detection range compared to the bare GCE and GO-modified GCE. The values of LOD, sensitivity and linear detection range for m-Fe 3 O 4 /GO/GCE were 59 nM, 27 µA µM −1  cm −2 and 1–4400 µM, respectively. The high electron transfer rate and larger surface area of GO together with the mesoporous nature of Fe 3 O 4 nanoparticles are responsible for the enhanced electrocatalytic activity of m-Fe 3 O 4 /GO-based electrochemical sensor. Most importantly, m-Fe 3 O 4 /GO/GCE-based electrochemical sensor developed in the present study exhibited excellent stability, reproducibility, reusability and anti-interference ability towards the detection of HDZ. The present study reveals that m-Fe 3 O 4 /GO is a promising material in developing highly efficient electrochemical sensors and biosensors.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-3145-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biosensors ; Characterization and Evaluation of Materials ; Chemical sensors ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Detection equipment ; Electric properties ; Electrical measurement ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemical reactions ; Electron microscopy ; Electron transfer ; Electronic Materials ; Electrons ; Fourier transforms ; Glassy carbon ; Graphene ; Graphite ; Hydrazines ; Infrared spectroscopy ; Iron oxides ; Magnetite ; Materials Science ; Medical equipment ; Microscopy ; Nanoparticles ; Nanosheets ; Photoelectrons ; Polymer Sciences ; Pore size ; Porosity ; Sensitivity ; Sensors ; Solid Mechanics ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; Spinel group ; Surface area ; Thermogravimetric analysis ; Transmission electron microscopy ; X ray powder diffraction ; X-ray diffraction ; X-ray spectroscopy</subject><ispartof>Journal of materials science, 2019-03, Vol.54 (5), p.4073-4088</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223</citedby><cites>FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223</cites><orcidid>0000-0001-8008-8759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vinodha, G.</creatorcontrib><creatorcontrib>Shima, P. D.</creatorcontrib><creatorcontrib>Cindrella, L.</creatorcontrib><title>Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe 3 O 4 )-loaded graphene oxide (GO) nanohybrid (m-Fe 3 O 4 /GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe 3 O 4 /GO hybrid was characterized by transmission electron microscopy, powder X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller surface area and pore size analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. Electrochemical behaviour of the m-Fe 3 O 4 /GO was explored using electrochemical impedance spectroscopy, cyclic voltammetry and by amperometric responses. The results reveal that m-Fe 3 O 4 /GO hybrid-modified glassy carbon electrode (GCE) holds promising detection capability for HDZ with better features of the lower limit of detection (LOD), high sensitivity and extensive linear detection range compared to the bare GCE and GO-modified GCE. The values of LOD, sensitivity and linear detection range for m-Fe 3 O 4 /GO/GCE were 59 nM, 27 µA µM −1  cm −2 and 1–4400 µM, respectively. The high electron transfer rate and larger surface area of GO together with the mesoporous nature of Fe 3 O 4 nanoparticles are responsible for the enhanced electrocatalytic activity of m-Fe 3 O 4 /GO-based electrochemical sensor. Most importantly, m-Fe 3 O 4 /GO/GCE-based electrochemical sensor developed in the present study exhibited excellent stability, reproducibility, reusability and anti-interference ability towards the detection of HDZ. The present study reveals that m-Fe 3 O 4 /GO is a promising material in developing highly efficient electrochemical sensors and biosensors.</description><subject>Biosensors</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical sensors</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Detection equipment</subject><subject>Electric properties</subject><subject>Electrical measurement</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical reactions</subject><subject>Electron microscopy</subject><subject>Electron transfer</subject><subject>Electronic Materials</subject><subject>Electrons</subject><subject>Fourier transforms</subject><subject>Glassy carbon</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hydrazines</subject><subject>Infrared spectroscopy</subject><subject>Iron oxides</subject><subject>Magnetite</subject><subject>Materials Science</subject><subject>Medical equipment</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Solid Mechanics</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spinel group</subject><subject>Surface area</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhk1podu0P6A3QU89KB1JtmUfQ-hHICHQj7OQpZFXwSu5khaS_fXV4kLJodJBMDyPZoa3ad4zuGQA8lNmMHSCAhuoYG1HTy-aHeukoO0A4mWzA-Cc8rZnr5s3OT8AQCc52zWnO8xxjSkeMznoOWDxBUnQIa46FW8WpBZNTLqgJXPS6x4Dkvjo7UblPWLJxMVE0DlvPIZCcEFTUjR7PHijF2Kx1IKPgURH9k826ZMP-LZ55fSS8d3f96L59eXzz-tv9Pb-68311S01YhgL7Vs7iZEBagnT1EsElCO3zrQCrHDOCRxRt1IAm_RgYOqmHsQopDC2NZyLi-bD9u-a4u8j5qIe4jGF2lJx3o0968f-TF1u1KwXVD64WJI29drzEjGg87V-1fX1gGRtFT4-EypT8LHM-pizuvnx_TnLNtakmHNCp9bkDzo9KQbqnJ_a8lM1P3XOT52qwzcnVzbMmP6N_X_pD9tAoG4</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Vinodha, G.</creator><creator>Shima, P. D.</creator><creator>Cindrella, L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8008-8759</orcidid></search><sort><creationdate>20190301</creationdate><title>Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine</title><author>Vinodha, G. ; Shima, P. D. ; Cindrella, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biosensors</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical sensors</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Detection equipment</topic><topic>Electric properties</topic><topic>Electrical measurement</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical reactions</topic><topic>Electron microscopy</topic><topic>Electron transfer</topic><topic>Electronic Materials</topic><topic>Electrons</topic><topic>Fourier transforms</topic><topic>Glassy carbon</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hydrazines</topic><topic>Infrared spectroscopy</topic><topic>Iron oxides</topic><topic>Magnetite</topic><topic>Materials Science</topic><topic>Medical equipment</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Solid Mechanics</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spinel group</topic><topic>Surface area</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinodha, G.</creatorcontrib><creatorcontrib>Shima, P. D.</creatorcontrib><creatorcontrib>Cindrella, L.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinodha, G.</au><au>Shima, P. D.</au><au>Cindrella, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>54</volume><issue>5</issue><spage>4073</spage><epage>4088</epage><pages>4073-4088</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe 3 O 4 )-loaded graphene oxide (GO) nanohybrid (m-Fe 3 O 4 /GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe 3 O 4 /GO hybrid was characterized by transmission electron microscopy, powder X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller surface area and pore size analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. Electrochemical behaviour of the m-Fe 3 O 4 /GO was explored using electrochemical impedance spectroscopy, cyclic voltammetry and by amperometric responses. The results reveal that m-Fe 3 O 4 /GO hybrid-modified glassy carbon electrode (GCE) holds promising detection capability for HDZ with better features of the lower limit of detection (LOD), high sensitivity and extensive linear detection range compared to the bare GCE and GO-modified GCE. The values of LOD, sensitivity and linear detection range for m-Fe 3 O 4 /GO/GCE were 59 nM, 27 µA µM −1  cm −2 and 1–4400 µM, respectively. The high electron transfer rate and larger surface area of GO together with the mesoporous nature of Fe 3 O 4 nanoparticles are responsible for the enhanced electrocatalytic activity of m-Fe 3 O 4 /GO-based electrochemical sensor. Most importantly, m-Fe 3 O 4 /GO/GCE-based electrochemical sensor developed in the present study exhibited excellent stability, reproducibility, reusability and anti-interference ability towards the detection of HDZ. The present study reveals that m-Fe 3 O 4 /GO is a promising material in developing highly efficient electrochemical sensors and biosensors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-3145-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8008-8759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-03, Vol.54 (5), p.4073-4088
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259616962
source Springer Nature
subjects Biosensors
Characterization and Evaluation of Materials
Chemical sensors
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Detection equipment
Electric properties
Electrical measurement
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrochemical reactions
Electron microscopy
Electron transfer
Electronic Materials
Electrons
Fourier transforms
Glassy carbon
Graphene
Graphite
Hydrazines
Infrared spectroscopy
Iron oxides
Magnetite
Materials Science
Medical equipment
Microscopy
Nanoparticles
Nanosheets
Photoelectrons
Polymer Sciences
Pore size
Porosity
Sensitivity
Sensors
Solid Mechanics
Spectroscopic analysis
Spectroscopy
Spectrum analysis
Spinel group
Surface area
Thermogravimetric analysis
Transmission electron microscopy
X ray powder diffraction
X-ray diffraction
X-ray spectroscopy
title Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20magnetite%20nanoparticle-decorated%20graphene%20oxide%20nanosheets%20for%20efficient%20electrochemical%20detection%20of%20hydrazine&rft.jtitle=Journal%20of%20materials%20science&rft.au=Vinodha,%20G.&rft.date=2019-03-01&rft.volume=54&rft.issue=5&rft.spage=4073&rft.epage=4088&rft.pages=4073-4088&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-3145-z&rft_dat=%3Cgale_proqu%3EA566660714%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259616962&rft_id=info:pmid/&rft_galeid=A566660714&rfr_iscdi=true