Loading…
Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine
Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe 3 O 4 )-loaded graphene oxide (GO) nanohybrid (m-Fe 3 O 4 /GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe 3 O 4 /GO hybrid was characterize...
Saved in:
Published in: | Journal of materials science 2019-03, Vol.54 (5), p.4073-4088 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223 |
container_end_page | 4088 |
container_issue | 5 |
container_start_page | 4073 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Vinodha, G. Shima, P. D. Cindrella, L. |
description | Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe
3
O
4
)-loaded graphene oxide (GO) nanohybrid (m-Fe
3
O
4
/GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe
3
O
4
/GO hybrid was characterized by transmission electron microscopy, powder X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller surface area and pore size analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. Electrochemical behaviour of the m-Fe
3
O
4
/GO was explored using electrochemical impedance spectroscopy, cyclic voltammetry and by amperometric responses. The results reveal that m-Fe
3
O
4
/GO hybrid-modified glassy carbon electrode (GCE) holds promising detection capability for HDZ with better features of the lower limit of detection (LOD), high sensitivity and extensive linear detection range compared to the bare GCE and GO-modified GCE. The values of LOD, sensitivity and linear detection range for m-Fe
3
O
4
/GO/GCE were 59 nM, 27 µA µM
−1
cm
−2
and 1–4400 µM, respectively. The high electron transfer rate and larger surface area of GO together with the mesoporous nature of Fe
3
O
4
nanoparticles are responsible for the enhanced electrocatalytic activity of m-Fe
3
O
4
/GO-based electrochemical sensor. Most importantly, m-Fe
3
O
4
/GO/GCE-based electrochemical sensor developed in the present study exhibited excellent stability, reproducibility, reusability and anti-interference ability towards the detection of HDZ. The present study reveals that m-Fe
3
O
4
/GO is a promising material in developing highly efficient electrochemical sensors and biosensors. |
doi_str_mv | 10.1007/s10853-018-3145-z |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259616962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A566660714</galeid><sourcerecordid>A566660714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1podu0P6A3QU89KB1JtmUfQ-hHICHQj7OQpZFXwSu5khaS_fXV4kLJodJBMDyPZoa3ad4zuGQA8lNmMHSCAhuoYG1HTy-aHeukoO0A4mWzA-Cc8rZnr5s3OT8AQCc52zWnO8xxjSkeMznoOWDxBUnQIa46FW8WpBZNTLqgJXPS6x4Dkvjo7UblPWLJxMVE0DlvPIZCcEFTUjR7PHijF2Kx1IKPgURH9k826ZMP-LZ55fSS8d3f96L59eXzz-tv9Pb-68311S01YhgL7Vs7iZEBagnT1EsElCO3zrQCrHDOCRxRt1IAm_RgYOqmHsQopDC2NZyLi-bD9u-a4u8j5qIe4jGF2lJx3o0968f-TF1u1KwXVD64WJI29drzEjGg87V-1fX1gGRtFT4-EypT8LHM-pizuvnx_TnLNtakmHNCp9bkDzo9KQbqnJ_a8lM1P3XOT52qwzcnVzbMmP6N_X_pD9tAoG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259616962</pqid></control><display><type>article</type><title>Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine</title><source>Springer Nature</source><creator>Vinodha, G. ; Shima, P. D. ; Cindrella, L.</creator><creatorcontrib>Vinodha, G. ; Shima, P. D. ; Cindrella, L.</creatorcontrib><description>Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe
3
O
4
)-loaded graphene oxide (GO) nanohybrid (m-Fe
3
O
4
/GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe
3
O
4
/GO hybrid was characterized by transmission electron microscopy, powder X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller surface area and pore size analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. Electrochemical behaviour of the m-Fe
3
O
4
/GO was explored using electrochemical impedance spectroscopy, cyclic voltammetry and by amperometric responses. The results reveal that m-Fe
3
O
4
/GO hybrid-modified glassy carbon electrode (GCE) holds promising detection capability for HDZ with better features of the lower limit of detection (LOD), high sensitivity and extensive linear detection range compared to the bare GCE and GO-modified GCE. The values of LOD, sensitivity and linear detection range for m-Fe
3
O
4
/GO/GCE were 59 nM, 27 µA µM
−1
cm
−2
and 1–4400 µM, respectively. The high electron transfer rate and larger surface area of GO together with the mesoporous nature of Fe
3
O
4
nanoparticles are responsible for the enhanced electrocatalytic activity of m-Fe
3
O
4
/GO-based electrochemical sensor. Most importantly, m-Fe
3
O
4
/GO/GCE-based electrochemical sensor developed in the present study exhibited excellent stability, reproducibility, reusability and anti-interference ability towards the detection of HDZ. The present study reveals that m-Fe
3
O
4
/GO is a promising material in developing highly efficient electrochemical sensors and biosensors.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-3145-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biosensors ; Characterization and Evaluation of Materials ; Chemical sensors ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Detection equipment ; Electric properties ; Electrical measurement ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemical reactions ; Electron microscopy ; Electron transfer ; Electronic Materials ; Electrons ; Fourier transforms ; Glassy carbon ; Graphene ; Graphite ; Hydrazines ; Infrared spectroscopy ; Iron oxides ; Magnetite ; Materials Science ; Medical equipment ; Microscopy ; Nanoparticles ; Nanosheets ; Photoelectrons ; Polymer Sciences ; Pore size ; Porosity ; Sensitivity ; Sensors ; Solid Mechanics ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; Spinel group ; Surface area ; Thermogravimetric analysis ; Transmission electron microscopy ; X ray powder diffraction ; X-ray diffraction ; X-ray spectroscopy</subject><ispartof>Journal of materials science, 2019-03, Vol.54 (5), p.4073-4088</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223</citedby><cites>FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223</cites><orcidid>0000-0001-8008-8759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vinodha, G.</creatorcontrib><creatorcontrib>Shima, P. D.</creatorcontrib><creatorcontrib>Cindrella, L.</creatorcontrib><title>Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe
3
O
4
)-loaded graphene oxide (GO) nanohybrid (m-Fe
3
O
4
/GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe
3
O
4
/GO hybrid was characterized by transmission electron microscopy, powder X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller surface area and pore size analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. Electrochemical behaviour of the m-Fe
3
O
4
/GO was explored using electrochemical impedance spectroscopy, cyclic voltammetry and by amperometric responses. The results reveal that m-Fe
3
O
4
/GO hybrid-modified glassy carbon electrode (GCE) holds promising detection capability for HDZ with better features of the lower limit of detection (LOD), high sensitivity and extensive linear detection range compared to the bare GCE and GO-modified GCE. The values of LOD, sensitivity and linear detection range for m-Fe
3
O
4
/GO/GCE were 59 nM, 27 µA µM
−1
cm
−2
and 1–4400 µM, respectively. The high electron transfer rate and larger surface area of GO together with the mesoporous nature of Fe
3
O
4
nanoparticles are responsible for the enhanced electrocatalytic activity of m-Fe
3
O
4
/GO-based electrochemical sensor. Most importantly, m-Fe
3
O
4
/GO/GCE-based electrochemical sensor developed in the present study exhibited excellent stability, reproducibility, reusability and anti-interference ability towards the detection of HDZ. The present study reveals that m-Fe
3
O
4
/GO is a promising material in developing highly efficient electrochemical sensors and biosensors.</description><subject>Biosensors</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical sensors</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Detection equipment</subject><subject>Electric properties</subject><subject>Electrical measurement</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical reactions</subject><subject>Electron microscopy</subject><subject>Electron transfer</subject><subject>Electronic Materials</subject><subject>Electrons</subject><subject>Fourier transforms</subject><subject>Glassy carbon</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hydrazines</subject><subject>Infrared spectroscopy</subject><subject>Iron oxides</subject><subject>Magnetite</subject><subject>Materials Science</subject><subject>Medical equipment</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Solid Mechanics</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spinel group</subject><subject>Surface area</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhk1podu0P6A3QU89KB1JtmUfQ-hHICHQj7OQpZFXwSu5khaS_fXV4kLJodJBMDyPZoa3ad4zuGQA8lNmMHSCAhuoYG1HTy-aHeukoO0A4mWzA-Cc8rZnr5s3OT8AQCc52zWnO8xxjSkeMznoOWDxBUnQIa46FW8WpBZNTLqgJXPS6x4Dkvjo7UblPWLJxMVE0DlvPIZCcEFTUjR7PHijF2Kx1IKPgURH9k826ZMP-LZ55fSS8d3f96L59eXzz-tv9Pb-68311S01YhgL7Vs7iZEBagnT1EsElCO3zrQCrHDOCRxRt1IAm_RgYOqmHsQopDC2NZyLi-bD9u-a4u8j5qIe4jGF2lJx3o0968f-TF1u1KwXVD64WJI29drzEjGg87V-1fX1gGRtFT4-EypT8LHM-pizuvnx_TnLNtakmHNCp9bkDzo9KQbqnJ_a8lM1P3XOT52qwzcnVzbMmP6N_X_pD9tAoG4</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Vinodha, G.</creator><creator>Shima, P. D.</creator><creator>Cindrella, L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8008-8759</orcidid></search><sort><creationdate>20190301</creationdate><title>Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine</title><author>Vinodha, G. ; Shima, P. D. ; Cindrella, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biosensors</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical sensors</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Detection equipment</topic><topic>Electric properties</topic><topic>Electrical measurement</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical reactions</topic><topic>Electron microscopy</topic><topic>Electron transfer</topic><topic>Electronic Materials</topic><topic>Electrons</topic><topic>Fourier transforms</topic><topic>Glassy carbon</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hydrazines</topic><topic>Infrared spectroscopy</topic><topic>Iron oxides</topic><topic>Magnetite</topic><topic>Materials Science</topic><topic>Medical equipment</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Solid Mechanics</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spinel group</topic><topic>Surface area</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinodha, G.</creatorcontrib><creatorcontrib>Shima, P. D.</creatorcontrib><creatorcontrib>Cindrella, L.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinodha, G.</au><au>Shima, P. D.</au><au>Cindrella, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>54</volume><issue>5</issue><spage>4073</spage><epage>4088</epage><pages>4073-4088</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Herein, we report the one-pot solvothermal synthesis of mesoporous magnetite nanoparticle (m-Fe
3
O
4
)-loaded graphene oxide (GO) nanohybrid (m-Fe
3
O
4
/GO) and its utilization for the efficient electrochemical detection of hydrazine (HDZ). The as-synthesized m-Fe
3
O
4
/GO hybrid was characterized by transmission electron microscopy, powder X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller surface area and pore size analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. Electrochemical behaviour of the m-Fe
3
O
4
/GO was explored using electrochemical impedance spectroscopy, cyclic voltammetry and by amperometric responses. The results reveal that m-Fe
3
O
4
/GO hybrid-modified glassy carbon electrode (GCE) holds promising detection capability for HDZ with better features of the lower limit of detection (LOD), high sensitivity and extensive linear detection range compared to the bare GCE and GO-modified GCE. The values of LOD, sensitivity and linear detection range for m-Fe
3
O
4
/GO/GCE were 59 nM, 27 µA µM
−1
cm
−2
and 1–4400 µM, respectively. The high electron transfer rate and larger surface area of GO together with the mesoporous nature of Fe
3
O
4
nanoparticles are responsible for the enhanced electrocatalytic activity of m-Fe
3
O
4
/GO-based electrochemical sensor. Most importantly, m-Fe
3
O
4
/GO/GCE-based electrochemical sensor developed in the present study exhibited excellent stability, reproducibility, reusability and anti-interference ability towards the detection of HDZ. The present study reveals that m-Fe
3
O
4
/GO is a promising material in developing highly efficient electrochemical sensors and biosensors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-3145-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8008-8759</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-03, Vol.54 (5), p.4073-4088 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259616962 |
source | Springer Nature |
subjects | Biosensors Characterization and Evaluation of Materials Chemical sensors Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Detection equipment Electric properties Electrical measurement Electrochemical analysis Electrochemical impedance spectroscopy Electrochemical reactions Electron microscopy Electron transfer Electronic Materials Electrons Fourier transforms Glassy carbon Graphene Graphite Hydrazines Infrared spectroscopy Iron oxides Magnetite Materials Science Medical equipment Microscopy Nanoparticles Nanosheets Photoelectrons Polymer Sciences Pore size Porosity Sensitivity Sensors Solid Mechanics Spectroscopic analysis Spectroscopy Spectrum analysis Spinel group Surface area Thermogravimetric analysis Transmission electron microscopy X ray powder diffraction X-ray diffraction X-ray spectroscopy |
title | Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20magnetite%20nanoparticle-decorated%20graphene%20oxide%20nanosheets%20for%20efficient%20electrochemical%20detection%20of%20hydrazine&rft.jtitle=Journal%20of%20materials%20science&rft.au=Vinodha,%20G.&rft.date=2019-03-01&rft.volume=54&rft.issue=5&rft.spage=4073&rft.epage=4088&rft.pages=4073-4088&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-3145-z&rft_dat=%3Cgale_proqu%3EA566660714%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-64db3910ea70bb67e0e792dfc430d3fff3e9ea47301ba8c0b5b6039373cd4c223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259616962&rft_id=info:pmid/&rft_galeid=A566660714&rfr_iscdi=true |