Loading…

Grain size-dependent dielectric, piezoelectric and ferroelectric properties of Sr2Bi4Ti5O18 ceramics

Fine powders comprising nano-crystallites of Sr 2 Bi 4 Ti 5 O 18 (SBT) were synthesized via citrate-assisted sol–gel route. Different ceramics of SBT with different grain sizes (93 nm–1.42 μm) were fabricated by varying sintering temperatures and durations. The usage of nano-crystalline powders for...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2016-10, Vol.51 (20), p.9253-9266
Main Authors: Shet, Tukaram, Bhimireddi, Rajasekhar, Varma, K. B. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-f16f9093fc5c765b8fbdf1a49033ed58a7c286df62e10d527c954c1151caf0cc3
cites cdi_FETCH-LOGICAL-c316t-f16f9093fc5c765b8fbdf1a49033ed58a7c286df62e10d527c954c1151caf0cc3
container_end_page 9266
container_issue 20
container_start_page 9253
container_title Journal of materials science
container_volume 51
creator Shet, Tukaram
Bhimireddi, Rajasekhar
Varma, K. B. R.
description Fine powders comprising nano-crystallites of Sr 2 Bi 4 Ti 5 O 18 (SBT) were synthesized via citrate-assisted sol–gel route. Different ceramics of SBT with different grain sizes (93 nm–1.42 μm) were fabricated by varying sintering temperatures and durations. The usage of nano-crystalline powders for fabricating ceramics facilitated lower sintering temperatures. The grain growth in these powder compacts was found to be controlled by the grain boundary curvature mechanism, associated with the activation energy of 181.9 kJ/mol. Interestingly, with a decrease in grain size there was an increase in structural distortion which resulted in a shift of Curie temperature (phase transition) toward higher temperatures than that of conventional bulk ceramics. Extended Landau phenomenological theory for the spherical ferroelectric particles was invoked to explain experimentally observed size-dependent phase transition temperature, and the critical size for SBT is predicted to be 11.3 nm. Grain size-dependent dielectric, ferroelectric and piezoelectric properties of the SBT ceramics were studied and the samples comprising average grain size of 645 nm exhibited superior physical properties that include remnant polarization (2 P r ) = 16.4 μC cm −2 , coercive field ( E c ) = 38 kV cm −1 , piezoelectric coefficient ( d 33 ) = 22 pC N −1 and planar electromechanical coupling coefficient ( k p ) = 14.8 %.
doi_str_mv 10.1007/s10853-016-0172-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259619605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259619605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f16f9093fc5c765b8fbdf1a49033ed58a7c286df62e10d527c954c1151caf0cc3</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmPwA7hF4krATpu0PcIEA2nSDoxz1CUOyrS1JekO8OvpVNBOHCzL1nvP1sfYNcIdAhT3CaFUmQDUQxVSqBM2QVVkIi8hO2UTACmFzDWes4uUNgCgCokT5uaxDg1P4ZuEo44aR03PXaAt2T4Ge8u7QN_t38jrxnFPMR43XWw7in2gxFvP36J8DPkqqCWW3FKsd8GmS3bm622iq98-Ze_PT6vZi1gs56-zh4WwGepeeNS-girzVtlCq3Xp185jnVeQZeRUWRdWltp5LQnBKVnYSuUWUaGtPVibTdnNmDv89Lmn1JtNu4_NcNJIqSqNlQY1qHBU2dimFMmbLoZdHb8MgjnANCNMM8A0B5jm4JGjJw3a5oPiMfl_0w9x83eY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259619605</pqid></control><display><type>article</type><title>Grain size-dependent dielectric, piezoelectric and ferroelectric properties of Sr2Bi4Ti5O18 ceramics</title><source>Springer Link</source><creator>Shet, Tukaram ; Bhimireddi, Rajasekhar ; Varma, K. B. R.</creator><creatorcontrib>Shet, Tukaram ; Bhimireddi, Rajasekhar ; Varma, K. B. R.</creatorcontrib><description>Fine powders comprising nano-crystallites of Sr 2 Bi 4 Ti 5 O 18 (SBT) were synthesized via citrate-assisted sol–gel route. Different ceramics of SBT with different grain sizes (93 nm–1.42 μm) were fabricated by varying sintering temperatures and durations. The usage of nano-crystalline powders for fabricating ceramics facilitated lower sintering temperatures. The grain growth in these powder compacts was found to be controlled by the grain boundary curvature mechanism, associated with the activation energy of 181.9 kJ/mol. Interestingly, with a decrease in grain size there was an increase in structural distortion which resulted in a shift of Curie temperature (phase transition) toward higher temperatures than that of conventional bulk ceramics. Extended Landau phenomenological theory for the spherical ferroelectric particles was invoked to explain experimentally observed size-dependent phase transition temperature, and the critical size for SBT is predicted to be 11.3 nm. Grain size-dependent dielectric, ferroelectric and piezoelectric properties of the SBT ceramics were studied and the samples comprising average grain size of 645 nm exhibited superior physical properties that include remnant polarization (2 P r ) = 16.4 μC cm −2 , coercive field ( E c ) = 38 kV cm −1 , piezoelectric coefficient ( d 33 ) = 22 pC N −1 and planar electromechanical coupling coefficient ( k p ) = 14.8 %.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-0172-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramic powders ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coercivity ; Coupling coefficients ; Crystallites ; Crystallography and Scattering Methods ; Curie temperature ; Curvature ; Dielectric properties ; Ferroelectric materials ; Ferroelectricity ; Grain boundaries ; Grain growth ; Grain size ; Materials Science ; Original Paper ; Phase transitions ; Physical properties ; Piezoelectricity ; Polymer Sciences ; Powder compacts ; Sintering (powder metallurgy) ; Sol-gel processes ; Solid Mechanics ; Temperature ; Temperature dependence ; Transition temperature</subject><ispartof>Journal of materials science, 2016-10, Vol.51 (20), p.9253-9266</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f16f9093fc5c765b8fbdf1a49033ed58a7c286df62e10d527c954c1151caf0cc3</citedby><cites>FETCH-LOGICAL-c316t-f16f9093fc5c765b8fbdf1a49033ed58a7c286df62e10d527c954c1151caf0cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shet, Tukaram</creatorcontrib><creatorcontrib>Bhimireddi, Rajasekhar</creatorcontrib><creatorcontrib>Varma, K. B. R.</creatorcontrib><title>Grain size-dependent dielectric, piezoelectric and ferroelectric properties of Sr2Bi4Ti5O18 ceramics</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Fine powders comprising nano-crystallites of Sr 2 Bi 4 Ti 5 O 18 (SBT) were synthesized via citrate-assisted sol–gel route. Different ceramics of SBT with different grain sizes (93 nm–1.42 μm) were fabricated by varying sintering temperatures and durations. The usage of nano-crystalline powders for fabricating ceramics facilitated lower sintering temperatures. The grain growth in these powder compacts was found to be controlled by the grain boundary curvature mechanism, associated with the activation energy of 181.9 kJ/mol. Interestingly, with a decrease in grain size there was an increase in structural distortion which resulted in a shift of Curie temperature (phase transition) toward higher temperatures than that of conventional bulk ceramics. Extended Landau phenomenological theory for the spherical ferroelectric particles was invoked to explain experimentally observed size-dependent phase transition temperature, and the critical size for SBT is predicted to be 11.3 nm. Grain size-dependent dielectric, ferroelectric and piezoelectric properties of the SBT ceramics were studied and the samples comprising average grain size of 645 nm exhibited superior physical properties that include remnant polarization (2 P r ) = 16.4 μC cm −2 , coercive field ( E c ) = 38 kV cm −1 , piezoelectric coefficient ( d 33 ) = 22 pC N −1 and planar electromechanical coupling coefficient ( k p ) = 14.8 %.</description><subject>Ceramic powders</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coercivity</subject><subject>Coupling coefficients</subject><subject>Crystallites</subject><subject>Crystallography and Scattering Methods</subject><subject>Curie temperature</subject><subject>Curvature</subject><subject>Dielectric properties</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Original Paper</subject><subject>Phase transitions</subject><subject>Physical properties</subject><subject>Piezoelectricity</subject><subject>Polymer Sciences</subject><subject>Powder compacts</subject><subject>Sintering (powder metallurgy)</subject><subject>Sol-gel processes</subject><subject>Solid Mechanics</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Transition temperature</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwzAMhSMEEmPwA7hF4krATpu0PcIEA2nSDoxz1CUOyrS1JekO8OvpVNBOHCzL1nvP1sfYNcIdAhT3CaFUmQDUQxVSqBM2QVVkIi8hO2UTACmFzDWes4uUNgCgCokT5uaxDg1P4ZuEo44aR03PXaAt2T4Ge8u7QN_t38jrxnFPMR43XWw7in2gxFvP36J8DPkqqCWW3FKsd8GmS3bm622iq98-Ze_PT6vZi1gs56-zh4WwGepeeNS-girzVtlCq3Xp185jnVeQZeRUWRdWltp5LQnBKVnYSuUWUaGtPVibTdnNmDv89Lmn1JtNu4_NcNJIqSqNlQY1qHBU2dimFMmbLoZdHb8MgjnANCNMM8A0B5jm4JGjJw3a5oPiMfl_0w9x83eY</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Shet, Tukaram</creator><creator>Bhimireddi, Rajasekhar</creator><creator>Varma, K. B. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161001</creationdate><title>Grain size-dependent dielectric, piezoelectric and ferroelectric properties of Sr2Bi4Ti5O18 ceramics</title><author>Shet, Tukaram ; Bhimireddi, Rajasekhar ; Varma, K. B. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f16f9093fc5c765b8fbdf1a49033ed58a7c286df62e10d527c954c1151caf0cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ceramic powders</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coercivity</topic><topic>Coupling coefficients</topic><topic>Crystallites</topic><topic>Crystallography and Scattering Methods</topic><topic>Curie temperature</topic><topic>Curvature</topic><topic>Dielectric properties</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Original Paper</topic><topic>Phase transitions</topic><topic>Physical properties</topic><topic>Piezoelectricity</topic><topic>Polymer Sciences</topic><topic>Powder compacts</topic><topic>Sintering (powder metallurgy)</topic><topic>Sol-gel processes</topic><topic>Solid Mechanics</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shet, Tukaram</creatorcontrib><creatorcontrib>Bhimireddi, Rajasekhar</creatorcontrib><creatorcontrib>Varma, K. B. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shet, Tukaram</au><au>Bhimireddi, Rajasekhar</au><au>Varma, K. B. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain size-dependent dielectric, piezoelectric and ferroelectric properties of Sr2Bi4Ti5O18 ceramics</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>51</volume><issue>20</issue><spage>9253</spage><epage>9266</epage><pages>9253-9266</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Fine powders comprising nano-crystallites of Sr 2 Bi 4 Ti 5 O 18 (SBT) were synthesized via citrate-assisted sol–gel route. Different ceramics of SBT with different grain sizes (93 nm–1.42 μm) were fabricated by varying sintering temperatures and durations. The usage of nano-crystalline powders for fabricating ceramics facilitated lower sintering temperatures. The grain growth in these powder compacts was found to be controlled by the grain boundary curvature mechanism, associated with the activation energy of 181.9 kJ/mol. Interestingly, with a decrease in grain size there was an increase in structural distortion which resulted in a shift of Curie temperature (phase transition) toward higher temperatures than that of conventional bulk ceramics. Extended Landau phenomenological theory for the spherical ferroelectric particles was invoked to explain experimentally observed size-dependent phase transition temperature, and the critical size for SBT is predicted to be 11.3 nm. Grain size-dependent dielectric, ferroelectric and piezoelectric properties of the SBT ceramics were studied and the samples comprising average grain size of 645 nm exhibited superior physical properties that include remnant polarization (2 P r ) = 16.4 μC cm −2 , coercive field ( E c ) = 38 kV cm −1 , piezoelectric coefficient ( d 33 ) = 22 pC N −1 and planar electromechanical coupling coefficient ( k p ) = 14.8 %.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-0172-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2016-10, Vol.51 (20), p.9253-9266
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259619605
source Springer Link
subjects Ceramic powders
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coercivity
Coupling coefficients
Crystallites
Crystallography and Scattering Methods
Curie temperature
Curvature
Dielectric properties
Ferroelectric materials
Ferroelectricity
Grain boundaries
Grain growth
Grain size
Materials Science
Original Paper
Phase transitions
Physical properties
Piezoelectricity
Polymer Sciences
Powder compacts
Sintering (powder metallurgy)
Sol-gel processes
Solid Mechanics
Temperature
Temperature dependence
Transition temperature
title Grain size-dependent dielectric, piezoelectric and ferroelectric properties of Sr2Bi4Ti5O18 ceramics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20size-dependent%20dielectric,%20piezoelectric%20and%20ferroelectric%20properties%20of%20Sr2Bi4Ti5O18%20ceramics&rft.jtitle=Journal%20of%20materials%20science&rft.au=Shet,%20Tukaram&rft.date=2016-10-01&rft.volume=51&rft.issue=20&rft.spage=9253&rft.epage=9266&rft.pages=9253-9266&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-0172-5&rft_dat=%3Cproquest_cross%3E2259619605%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f16f9093fc5c765b8fbdf1a49033ed58a7c286df62e10d527c954c1151caf0cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259619605&rft_id=info:pmid/&rfr_iscdi=true