Loading…
Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs)
The metal-matrix composites/nano-composites (MMCs/MMNCs) reinforced with hard ceramic particulates have received a tremendous attention due to their potential improvements in physical and mechanical performances. In the present work, we have comprehensively collected currently available experimental...
Saved in:
Published in: | Journal of materials science 2017-12, Vol.52 (23), p.13319-13349 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The metal-matrix composites/nano-composites (MMCs/MMNCs) reinforced with hard ceramic particulates have received a tremendous attention due to their potential improvements in physical and mechanical performances. In the present work, we have comprehensively collected currently available experimental data sets of Al-based MMCs/MMNCs and have carried out thorough analyses to quantitatively address the impacts of the reinforcement volume fractions, reinforcement particle sizes, and metal-matrix grain sizes on their mechanical properties including the yield strength, ultimate strength, and strain to failure of composites. We also performed a quantitative analysis on the strengthening mechanisms of Al MMNCs to reveal that the grain refinement can play a major role in increasing the strength of composites. Al-based MMC or MMNC materials generally exhibited an indirect relationship between the strength increase and strain-to-failure increase. The results include a critical comparison for the mechanical performance of particulate-reinforced composites for both pure and alloyed Al matrices to elucidate the contemporary status of Al MMC and MMNC materials. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-017-1378-x |